Share:
Share this content in WeChat
X
Reviews
Research progress of brain network in obstructive sleep apnea
CHEN Huiyu  JIANG Guihua  LI Meng  CHEN Ziwei  PAN Liping 

Cite this article as: CHEN H Y, JIANG G H, LI M, et al. Research progress of brain network in obstructive sleep apnea[J]. Chin J Magn Reson Imaging, 2023, 14(7): 139-143. DOI:10.12015/issn.1674-8034.2023.07.025.


[Abstract] Obstructive sleep apnea (OSA) is one of the most common sleep disorders, characterized by partial or complete airway obstruction and intermittent hypoxia due to collapse of the upper airway during sleep, and its occurrence is associated with abnormal changes in the structural and functional brain networks. With the rapid development of MRI, more and more researchers have focused on the association between changes in network properties and the pathophysiological mechanisms of OSA. The purpose of this paper is to review the progress of research on brain structure and functional networks in OSA, to analyze the characteristics of functional and structural network property changes in OSA from multiple perspectives, and to discuss the connection and mechanisms between neuropathological changes in OSA and changes in brain function and structural network properties, in order to provide new ideas for clinical search for neuroimaging markers of OSA and understanding the potential neuroimaging mechanisms of cognitive dysfunction caused by OSA.
[Keywords] obstructive sleep apnea;brain network;magnetic resonance imaging;topological properties;structural network;functional network

CHEN Huiyu1   JIANG Guihua1, 2*   LI Meng2   CHEN Ziwei2   PAN Liping2  

1 The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China

2 Department of Medical Imaging, Guangdong Second Provincial General Hospital Affiliated to Jinan University, Guangzhou 510317, China

Corresponding author: Jiang GH, E-mail: GH.jiang2002@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. U1903120).
Received  2023-02-17
Accepted  2023-06-25
DOI: 10.12015/issn.1674-8034.2023.07.025
Cite this article as: CHEN H Y, JIANG G H, LI M, et al. Research progress of brain network in obstructive sleep apnea[J]. Chin J Magn Reson Imaging, 2023, 14(7): 139-143. DOI:10.12015/issn.1674-8034.2023.07.025.

[1]
JORDAN A S, MCSHARRY D G, MALHOTRA A. Adult obstructive sleep apnoea[J]. Lancet, 2014, 383(9918): 736-747. DOI: 10.1016/S0140-6736(13)60734-5.
[2]
MEDIANO O, GONZÁLEZ MANGADO N, MONTSERRAT J M, et al. International consensus document on obstructive sleep apnea[J]. Arch Bronconeumol, 2022, 58(1): 52-68. DOI: 10.1016/j.arbres.2021.03.017.
[3]
SATEIA M J. International Classification of Sleep Disorders-Third Edition[J]. Chest, 2014, 146(5): 1387-1394. DOI: 10.1378/chest.14-0970.
[4]
VANEK J, PRASKO J, GENZOR S, et al. Obstructive sleep apnea, depression and cognitive impairment[J]. Sleep Med, 2020, 72: 50-58. DOI: 10.1016/j.sleep.2020.03.017.
[5]
GARBARINO S, BARDWELL W A, GUGLIELMI O, et al. Association of Anxiety and Depression in Obstructive Sleep Apnea Patients: A Systematic Review and Meta-Analysis[J]. Behav Sleep Med, 2020, 18(1): 35-57. DOI: 10.1080/15402002.2018.1545649.
[6]
GOTTLIEB D J, ELLENBOGEN J M, BIANCHI M T, et al. Sleep deficiency and motor vehicle crash risk in the general population: a prospective cohort study[J/OL]. BMC Med, 2018, 16(1): 44 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/29554902/. DOI: 10.1186/s12916-018-1025-7.
[7]
ROSENZWEIG I, GLASSER M, POLSEK D, et al. Sleep apnoea and the brain: a complex relationship[J]. Lancet Respir Med, 2015, 3(5): 404-414. DOI: 10.1016/S2213-2600(15)00090-9.
[8]
BÖNSTRUP M, SCHULZ R, FELDHEIM J, et al. Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task[J]. NeuroImage, 2016, 124(Pt A): 498-508. DOI: 10.1016/j.neuroimage.2015.08.052.
[9]
BEHESHTIAN E, JALILIANHASANPOUR R, MODIR SHANECHI A, et al. Identification of the Somatomotor Network from Language Task-based fMRI Compared with Resting-State fMRI in Patients with Brain Lesions[J]. Radiology, 2021, 301(1): 178-184. DOI: 10.1148/radiol.2021204594.
[10]
BUCKNER R L, ANDREWS-HANNA J R, SCHACTER D L. The brain's default network: anatomy, function, and relevance to disease[J]. Ann N Y Acad Sci, 2008, 1124: 1-38. DOI: 10.1196/annals.1440.011.
[11]
HOU A, PANG X, ZHANG X, et al. Widespread aberrant functional connectivity throughout the whole brain in obstructive sleep apnea[J/OL]. Front. Neurosci, 2022, 16: 920765 [2023-02-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377518/. DOI: 10.3389/fnins.2022.920765.
[12]
LIN W C, HSU T W, LU C H, et al. Alterations in sympathetic and parasympathetic brain networks in obstructive sleep apnea[J]. Sleep Med, 2020, 73: 135-142. DOI: 10.1016/j.sleep.2020.05.038.
[13]
CHANG Y T, CHEN Y C, CHEN Y L, et al. Functional connectivity in default mode network correlates with severity of hypoxemia in obstructive sleep apnea[J/OL]. Brain Behav, 2020, 10(12): e01889 [2023-02-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749584/. DOI: 10.1002/brb3.1889.
[14]
ZHOU L, LIU G, LUO H, et al. Aberrant Hippocampal Network Connectivity Is Associated With Neurocognitive Dysfunction in Patients With Moderate and Severe Obstructive Sleep Apnea[J/OL]. Front Neurol, 2020, 11: 580408 [2023-02-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759642/. DOI: 10.3389/fneur.2020.580408.
[15]
SONG X, ROY B, KANG D W, et al. Altered resting-state hippocampal and caudate functional networks in patients with obstructive sleep apnea[J/OL]. Brain Behav, 2018, 8(6): e00994 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/29749715/. DOI: 10.1002/brb3.994.
[16]
PARK B, PALOMARES J A, WOO M A, et al. Aberrant Insular Functional Network Integrity in Patients with Obstructive Sleep Apnea[J]. Sleep, 2016, 39(5): 989-1000. DOI: 10.5665/sleep.5738.
[17]
ZHANG Q, WANG D, QIN W, et al. Altered Resting-State Brain Activity in Obstructive Sleep Apnea[J]. Sleep, 2013, 36(5): 651-659. DOI: 10.5665/sleep.2620.
[18]
LEE M H, SIN S, LEE S, et al. Altered cortical structure network in children with obstructive sleep apnea[J/OL]. Sleep, 2022, 45(5): zsac030 [2023-02-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113011/. DOI: 10.1093/sleep/zsac030.
[19]
LI H, LI L, LI K, et al. Abnormal dynamic functional network connectivity in male obstructive sleep apnea with mild cognitive impairment: A data-driven functional magnetic resonance imaging study[J/OL]. Front Aging Neurosci, 2022, 14: 977917 [2023-02-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640755/. DOI: 10.3389/fnagi.2022.977917.
[20]
LEE M H, LEE S K, THOMAS R J, et al. Deep Learning-Based Assessment of Brain Connectivity Related to Obstructive Sleep Apnea and Daytime Sleepiness[J]. Nat Sci Sleep, 2021, 13: 1561-1572. DOI: 10.2147/NSS.S327110.
[21]
TIAN L, WANG J, YAN C, et al. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study[J]. Neuroimage, 2011, 54(1): 191-202. DOI: 10.1016/j.neuroimage.2010.07.066.
[22]
WANG J, TAO A, ANDERSON W S, et al. Mesoscopic physiological interactions in the human brain reveal small-world properties[J/OL]. Cell Rep, 2021, 36(8): 109585 [2023-02-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457376/. DOI: 10.1016/j.celrep.2021.109585.
[23]
CHEN L T, FAN X L, LI H J, et al. Disrupted small-world brain functional network topology in male patients with severe obstructive sleep apnea revealed by resting-state fMRI[J]. Neuropsychiatr Dis Treat, 2017, 13: 1471-1482. DOI: 10.2147/NDT.S135426.
[24]
ZUO C, SUO X, LAN H, et al. Global Alterations of Whole Brain Structural Connectome in Parkinson's Disease: A Meta-analysis[J/OL]. Neuropsychol Rev, 2022 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/36125651/. DOI: 10.1007/s11065-022-09559-y.
[25]
GARCIA-CABELLO E, GONZALEZ-BURGOS L, PEREIRA J B, et al. The Cognitive Connectome in Healthy Aging[J/OL]. Front Aging Neurosci, 2021, 13: 694254 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/34489673/. DOI: 10.3389/fnagi.2021.694254.
[26]
RUBINOV M, SPORNS O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage, 2010, 52(3): 1059-1069. DOI: 10.1016/j.neuroimage.2009.10.003.
[27]
CHEN L, FAN X, LI H, et al. Topological Reorganization of the Default Mode Network in Severe Male Obstructive Sleep Apnea[J/OL]. Front Neurol, 2018, 9: 363 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/29951028/. DOI: 10.3389/fneur.2018.00363.
[28]
JI T, REN X, LONG T, et al. Aberrant Topological Properties of Brain Functional Network in Children with Obstructive Sleep Apnea Derived from Resting-State fMRI[J]. Brain Topogr, 2023, 36(1): 72-86. DOI: 10.1007/s10548-022-00920-1.
[29]
PARK H R, CHA J, JOO E Y, et al. Altered cerebrocerebellar functional connectivity in patients with obstructive sleep apnea and its association with cognitive function[J/OL]. Sleep, 2022, 45(1): zsab209 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/34432059/. DOI: 10.1093/sleep/zsab209.
[30]
LI H, LI L, SHAO Y, et al. Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis[J/OL]. PLoS One, 2016, 11(10): e0164031 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/27723821/. DOI: 10.1371/journal.pone.0164031.
[31]
CHEN L T, FAN X L, LI H J, et al. Aberrant brain functional connectome in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2018, 14: 1059-1070. DOI: 10.2147/NDT.S161085.
[32]
ZUO X N, EHMKE R, MENNES M, et al. Network centrality in the human functional connectome[J]. Cereb Cortex, 2012, 22(8): 1862-1875. DOI: 10.1093/cercor/bhr269.
[33]
LIU X, CHEN L, DUAN W, et al. Abnormal Functional Connectivity of Hippocampal Subdivisions in Obstructive Sleep Apnea: A Resting-State Functional Magnetic Resonance Imaging Study[J/OL]. Front Neurosci, 2022, 16: 850940 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/35546892/. DOI: 10.3389/fnins.2022.850940.
[34]
BURGESS N, MAGUIRE E A, O'KEEFE J. The human hippocampus and spatial and episodic memory[J]. Neuron, 2002, 35(4): 625-641. DOI: 10.1016/s0896-6273(02)00830-9.
[35]
AGGLETON J P, O'MARA S M, VANN S D, et al. Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions[J]. Eur J Neurosci, 2010, 31(12): 2292-2307. DOI: 10.1111/j.1460-9568.2010.07251.x.
[36]
HARPER R M, MACEY P M, HENDERSON L A, et al. fMRI responses to cold pressor challenges in control and obstructive sleep apnea subjects[J]. J Appl Physiol (1985), 2003, 94(4): 1583-1595. DOI: 10.1152/japplphysiol.00881.2002.
[37]
TAYLOR K S, MILLAR P J, MURAI H, et al. Cortical autonomic network gray matter and sympathetic nerve activity in obstructive sleep apnea[J/OL]. Sleep, 2018, 41(2): zsx208 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/29309669/. DOI: 10.1093/sleep/zsx208.
[38]
KONG L, LI H, SHU Y, et al. Aberrant Resting-State Functional Brain Connectivity of Insular Subregions in Obstructive Sleep Apnea[J/OL]. Front Neurosci, 2022, 15: 765775 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/35126035/. DOI: 10.3389/fnins.2021.765775.
[39]
NAMKUNG H, KIM S-H, SAWA A. The Insula: An Underestimated Brain Area in Clinical Neuroscience, Psychiatry, and Neurology[J]. Trends Neurosci, 2017, 40(4): 200-207. DOI: 10.1016/j.tins.2017.02.002.
[40]
LUO Y, WANG D, LIU K, et al. Brain Structure Network Analysis in Patients with Obstructive Sleep Apnea[J/OL]. PLoS One, 2015, 10(9): e0139055 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/26413809/. DOI: 10.1371/journal.pone.0139055.
[41]
PRILIPKO O, HUYNH N, SCHWARTZ S, et al. Task Positive and Default Mode Networks during a Parametric Working Memory Task in Obstructive Sleep Apnea Patients and Healthy Controls[J/OL]. Sleep, 2011, 34(3): 293-301A [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/21358846/. DOI: 10.1093/sleep/34.3.293.
[42]
LEE M H, YUN C H, MIN A, et al. Altered structural brain network resulting from white matter injury in obstructive sleep apnea[J/OL]. Sleep, 2019, 42(9): zsz120 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/31260533/. DOI: 10.1093/sleep/zsz120.
[43]
VON LEUPOLDT A, SOMMER T, KEGAT S, et al. The unpleasantness of perceived dyspnea is processed in the anterior insula and amygdala[J]. Am J Respir Crit Care Med, 2008, 177(9): 1026-1032. DOI: 10.1164/rccm.200712-1821OC.
[44]
SUPEKAR K, MUSEN M, MENON V. Development of large-scale functional brain networks in children[J/OL]. PLoS Biol, 2009, 7(7): e1000157 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/19621066/. DOI: 10.1371/journal.pbio.1000157.
[45]
ZAMORA-LÓPEZ G, ZHOU C, KURTHS J. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks[J/OL]. Front Neuroinform, 2010, 4: 1 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/20428515/. DOI: 10.3389/neuro.11.001.2010.
[46]
ROYER J, BERNHARDT B C, LARIVIÈRE S, et al. Epilepsy and brain network hubs[J]. Epilepsia, 2022, 63(3): 537-550. DOI: 10.1111/epi.17171.
[47]
ZHANG Y J, LI Y, WANG Y M, et al. Hub-connected functional connectivity within social brain network weakens the association with real-life social network in schizophrenia patients[J]. Eur Arch Psychiatry Clin Neurosci, 2022, 272(6): 1033-1043. DOI: 10.1007/s00406-021-01344-x.
[48]
LIU W, CAO C, HU B, et al. Topological Regularization of Networks in Adult Patients with Moderate-to-Severe Obstructive Sleep Apnea-Hypopnea Syndrome: A Structural MRI Study[J]. Nat Sci Sleep, 2020, 12: 333-345. DOI: 10.2147/NSS.S248643.
[49]
LIVINGSTON G, HUNTLEY J, SOMMERLAD A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. Lancet, 2020, 396(10248): 413-446. DOI: 10.1016/S0140-6736(20)30367-6.
[50]
DAULATZAI M A. Cerebral Hypoperfusion and Glucose Hypometabolism: Key Pathophysiological Modulators Promote Neurodegeneration, Cognitive Impairment, and Alzheimer's Disease[J]. J Neurosci Res, 2017, 95(4): 943-972. DOI: 10.1002/jnr.23777.
[51]
WANG L L, OU Q. Progression of the correlation between intestinal flora and obstructive sleep apnea and complications[J]. Natl Med J China, 2021, 101(35): 2821-2824. DOI: 10.3760/cma.j.cn112137-20210408-00842.
[52]
BADRAN M, MASHAQI S, GOZAL D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea[J]. Expert Opin Ther Targets, 2020, 24(12): 1263-1282. DOI: 10.1080/14728222.2020.1841749.
[53]
PACK A I. Gut microbiome: Role in insulin resistance in obstructive sleep apnea[J/OL]. EBioMedicine, 2021, 65: 103278 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/33714890/. DOI: 10.1016/j.ebiom.2021.103278.
[54]
ZHANG X, WANG S, XU H, et al. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: a comprehensive review[J/OL]. Eur Respir Rev, 2021, 30(160): 200220 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/33980666/. DOI: 10.1183/16000617.0220-2020.

PREV Research progress of MRI in cognitive impairment of Parkinson,s disease
NEXT Research progress of quantitative MRI technique in temporal lobe epilepsy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn