Share:
Share this content in WeChat
X
Reviews
Research progress of quantitative MRI technique in temporal lobe epilepsy
XU Donghao  LIU Miaomiao  LIU Yuwei  GONG He  LI Xianglin 

Cite this article as: XU D H, LIU M M, LIU Y W, et al. Research progress of quantitative MRI technique in temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2023, 14(7): 144-148, 170. DOI:10.12015/issn.1674-8034.2023.07.026.


[Abstract] Temporal lobe epilepsy (TLE) is a type of epilepsy based on the abnormal discharge of neurons in the temporal lobe region. The incidence of TLE in patients with epilepsy is about 40%. medial temporal sclerosis (MTS) is the most common cause of drug-resistant focal epilepsy. Surgical treatment is the first choice for the treatment. Conventional structural MRI, as an important preoperative reference for patients with refractory TLE, cannot accurately localize and lateralize the epileptogenic zone. Quantitative MRI technology can provide more objective and accurate structural and functional information through quantitative or semi-quantitative methods, and has higher sensitivity than structural MRI. This article will briefly introduce the quantitative imaging technology related to TLE, including relaxation time, metabolic level, tissue microstructure and perfusion imaging, and review its application progress in the diagnosis and treatment of TLE and TLE network research, aiming to assist in the accurate localization of epileptogenic zone, the evaluation of lesion degree, and the formulation of individualized treatment plan during the diagnosis and treatment of TLE.
[Keywords] temporal lobe epilepsy;medial temporal sclerosis;magnetic resonance imaging;quantitative magnetic resonance imaging;biomarker

XU Donghao   LIU Miaomiao   LIU Yuwei   GONG He   LI Xianglin*  

School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

Corresponding author: Li XL, E-mail: xlli@bzmc.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 62176181); Key R & D Plan of Shandong Province (No. 2018YFJH0501).
Received  2023-01-13
Accepted  2023-06-25
DOI: 10.12015/issn.1674-8034.2023.07.026
Cite this article as: XU D H, LIU M M, LIU Y W, et al. Research progress of quantitative MRI technique in temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2023, 14(7): 144-148, 170. DOI:10.12015/issn.1674-8034.2023.07.026.

[1]
ENGEL J. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology[J]. Epilepsia, 2001, 42(6): 796-803. DOI: 10.1046/j.1528-1157.2001.10401.x.
[2]
ALLONE C, BUONO V LO, CORALLO F, et al. Neuroimaging and cognitive functions in temporal lobe epilepsy: A review of the literature[J]. J Neurol Sci, 2017, 381: 7-15. DOI: 10.1016/j.jns.2017.08.007.
[3]
BERG A T, BERKOVIC S F, BRODIE M J, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009[J]. Epilepsia, 2010, 51(4): 676-685. DOI: 10.1111/j.1528-1167.2010.02522.x.
[4]
ASADI-POOYA A A, STEWART G R, ABRAMS D J, et al. Prevalence and Incidence of Drug-Resistant Mesial Temporal Lobe Epilepsy in the United States[J]. World Neurosurg, 2017, 99: 662-666. DOI: 10.1016/j.wneu.2016.12.074.
[5]
SPENCER S, HUH L. Outcomes of epilepsy surgery in adults and children[J]. Lancet Neurol, 2008, 7(6): 525-537. DOI: 10.1016/S1474-4422(08)70109-1.
[6]
KRUCOFF M O, CHAN A Y, HARWARD S C, et al. Rates and predictors of success and failure in repeat epilepsy surgery: A meta-analysis and systematic review[J]. Epilepsia, 2017, 58(12): 2133-2142. DOI: 10.1111/epi.13920.
[7]
THIJS R D, SURGES R, O'BRIEN T J, et al. Epilepsy in adults[J]. The Lancet, 2019, 393(10172): 689-701. DOI: 10.1016/s0140-6736(18)32596-0.
[8]
MO J, WEI W, LIU Z, et al. Neuroimaging Phenotyping and Assessment of Structural-Metabolic-Electrophysiological Alterations in the Temporal Neocortex of Focal Cortical Dysplasia IIIa[J]. J Magn Reson Imaging, 2021, 54(3): 925-935. DOI: 10.1002/jmri.27615.
[9]
SULLIVAN D C, OBUCHOWSKI N A, KESSLER L G, et al. Metrology Standards for Quantitative Imaging Biomarkers[J]. Radiology, 2015, 277(3): 813-825. DOI: 10.1148/radiol.2015142202.
[10]
SMITS M. MRI biomarkers in neuro-oncology[J]. Nature Reviews Neurology, 2021, 17(8): 486-500. DOI: 10.1038/s41582-021-00510-y.
[11]
JIA F L, QU H B, NING G. Advances of MRI quantitative evaluation on fetal myelination[J]. Chin J Med Imaging Technol, 2020, 36(8): 1140-1143. DOI: 10.13929/j.issn.1003-3289.2020.08.005.
[12]
THOM M, HOLTON J L, D'ARRIGO C, et al. Microdysgenesis with abnormal cortical myelinated fibres in temporal lobe epilepsy: a histopathological study with calbindin D-28-K immunohistochemistry[J]. Neuropathology and Applied Neurobiology, 2000, 26(3): 251-257. DOI: 10.1046/j.1365-2990.2000.00229.x.
[13]
STUBER C, MORAWSKI M, SCHAFER A, et al. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast[J]. Neuroimage, 2014, 93Pt 1: 95-106. DOI: 10.1016/j.neuroimage.2014.02.026.
[14]
BERNHARDT B C, FADAIE F, DE WAEL R VOS, et al. Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: A quantitative T1 mapping study[J]. Neuroimage, 2018, 182: 294-303. DOI: 10.1016/j.neuroimage.2017.06.002.
[15]
KHAN A R, GOUBRAN M, DE RIBAUPIERRE S, et al. Quantitative relaxometry and diffusion MRI for lateralization in MTS and non-MTS temporal lobe epilepsy[J]. Epilepsy Res, 2014, 108(3): 506-516. DOI: 10.1016/j.eplepsyres.2013.12.012.
[16]
GOUBRAN M, BERNHARDT B C, CANTOR-RIVERA D, et al. In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy[J]. Hum Brain Mapp, 2016, 37(3): 1103-1119. DOI: 10.1002/hbm.23090.
[17]
LIAO C, WANG K, CAO X, et al. Detection of Lesions in Mesial Temporal Lobe Epilepsy by Using MR Fingerprinting[J]. Radiology, 2018, 288(3): 804-812. DOI: 10.1148/radiol.2018172131.
[18]
WANG K, CAO X, WU D, et al. Magnetic resonance fingerprinting of temporal lobe white matter in mesial temporal lobe epilepsy[J]. Ann Clin Transl Neurol, 2019, 6(9): 1639-1646. DOI: 10.1002/acn3.50851.
[19]
MA D, JONES S E, DESHMANE A, et al. Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions[J]. J Magn Reson Imaging, 2019, 49(5): 1333-1346. DOI: 10.1002/jmri.26319.
[20]
CHOI J Y, KRISHNAN B, HU S, et al. Using magnetic resonance fingerprinting to characterize periventricular nodular heterotopias in pharmacoresistant epilepsy[J]. Epilepsia, 2022, 63(5): 1225-1237. DOI: 10.1111/epi.17191.
[21]
LARIVIÈRE S, RODRÍGUEZ-CRUCES R, ROYER J, et al. Network-based atrophy modeling in the common epilepsies: A worldwide ENIGMA study[J/OL]. Sci Adv, 2020, 6(47): eabc6457 [2023-01-12]. https://pubmed.ncbi.nlm.nih.gov/33208365/. DOI: 10.1126/sciadv.abc6457.
[22]
GUO X D, LU X Q, WANG Z H, et al. Clinical analysis of 27 preschoolers with refractory temporal lobe epilepsy[J]. Chin J Neuromed, 2021, 20(1): 65-70. DOI: 10.3760/cma.j.cn115354-20201027-00849.
[23]
SONG S S, LI W, ZHANG P N, et al. Comparison of the localization diagnosis between 1H-magnetic resonance spectroscopy and electroencephalogram in temporal lobe epilepsy without lesion[J]. Chin J Neurol, 2017, 50(12): 912-916. DOI: 10.3760/cma.j.issn.1006-7876.2017.12.007.
[24]
RIEDERER F, BITTSANSKÝ M, SCHMIDT C, et al. 1H magnetic resonance spectroscopy at 3 T in cryptogenic and mesial temporal lobe epilepsy[J]. NMR Biomed, 2006, 19(5): 544-553.
[25]
PIMENTEL-SILVA L R, CASSEB R F, CORDEIRO M M, et al. Interactions between in vivo neuronal-glial markers, side of hippocampal sclerosis, and pharmacoresponse in temporal lobe epilepsy[J]. Epilepsia, 2020, 61(5): 1008-1018. DOI: 10.1111/epi.16509.
[26]
CHOWDHURY F A, O'GORMAN R L, NASHEF L, et al. Investigation of glutamine and GABA levels in patients with idiopathic generalized epilepsy using MEGAPRESS[J]. J Magn Reson Imaging, 2015, 41(3): 694-699. DOI: 10.1002/jmri.24611.
[27]
HE C, LIU P, WU Y, et al. Gamma-aminobutyric acid (GABA) changes in the hippocampus and anterior cingulate cortex in patients with temporal lobe epilepsy[J]. Epilepsy Behav, 2021, 115: 107683. DOI: 10.1016/j.yebeh.2020.107683.
[28]
STARCK G, VKHOFF-BAAZ B, LJUNGBERG M, et al. Anterior to posterior hippocampal MRS metabolite difference is mainly a partial volume effect[J]. Acta Radiol, 2010, 51(3): 351-359. DOI: 10.3109/02841850903540401.
[29]
HU F X, TONG T, PENG W J. The progress of chemical exchange saturation transfer MRI in the application of tumor research[J]. Chin J Radiol, 2022, 56(10): 1149-1154. DOI: 10.3760/cma.j.cn112149-20211026-00955.
[30]
VEZZANI A, RAVIZZA T, BEDNER P, et al. Astrocytes in the initiation and progression of epilepsy[J]. Nat Rev Neurol, 2022, 18(12): 707-722. DOI: 10.1038/s41582-022-00727-5.
[31]
CAVUS I, ROMANYSHYN J C, KENNARD J T, et al. Elevated basal glutamate and unchanged glutamine and GABA in refractory epilepsy: Microdialysis study of 79 patients at the yale epilepsy surgery program[J]. Ann Neurol, 2016, 80(1): 35-45. DOI: 10.1002/ana.24673.
[32]
PFISTERER U, PETUKHOV V, DEMHARTER S, et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis[J]. Nat Commun, 2020, 11(1): 5038. DOI: 10.1038/s41467-020-18752-7.
[33]
BOZZI Y, PROVENZANO G, CASAROSA S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance[J]. Eur J Neurosci, 2018, 47(6): 534-548. DOI: 10.1111/ejn.13595.
[34]
CAI K, HARIS M, SINGH A, et al. Magnetic resonance imaging of glutamate[J]. Nat Med, 2012, 18(2): 302-306. DOI: 10.1038/nm.2615.
[35]
SARLO G L, HOLTON K F. Brain concentrations of glutamate and GABA in human epilepsy: A review[J]. Seizure, 2021, 91: 213-227. DOI: 10.1016/j.seizure.2021.06.028.
[36]
DAVIS K A, NANGA R P R, DAS S, et al. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy[J/OL]. Sci Transl Med, 2015, 7(309): 309ra161 [2023-01-12]. https://pubmed.ncbi.nlm.nih.gov/26468323/. DOI: 10.1126/scitranslmed.aaa7095.
[37]
HADAR P N, KINI L G, NANGA R P R, et al. Volumetric glutamate imaging (GluCEST) using 7T MRI can lateralize nonlesional temporal lobe epilepsy: A preliminary study[J/OL]. Brain Behav, 2021, 11(8): e02134 [2023-01-12]. https://pubmed.ncbi.nlm.nih.gov/34255437/. DOI: 10.1002/brb3.2134.
[38]
LUCAS A, NANGA R P R, HADAR P, et al. Mapping hippocampal glutamate in mesial temporal lobe epilepsy with glutamate weighted CEST (GluCEST) imaging[J]. Hum Brain Mapp, 2023, 44(2): 549-558 . DOI: 10.1002/hbm.26083.
[39]
ZHOU Q, ZHANG G H, WU C Z, et al. Application progress of diffusion weighted magnetic resonance imaging in epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(8): 104-108. DOI: 10.12015/issn.1674-8034.2022.08.023.
[40]
GLEICHGERRCHT E, MUNSELL B, BHATIA S, et al. Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery[J]. Epilepsia, 2018, 59(9): 1643-1654. DOI: 10.1111/epi.14528.
[41]
OTTE W M, VAN EIJSDEN P, SANDER J W, et al. A meta-analysis of white matter changes in temporal lobe epilepsy as studied with diffusion tensor imaging[J]. Epilepsia, 2012, 53(4): 659-667. DOI: 10.1111/j.1528-1167.2012.03426.x.
[42]
LABATE A, CHERUBINI A, TRIPEPI G, et al. White matter abnormalities differentiate severe from benign temporal lobe epilepsy[J]. Epilepsia, 2015, 56(7): 1109-1116. DOI: 10.1111/epi.13027.
[43]
HATTON S N, HUYNH K H, BONILHA L, et al. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study[J]. Brain, 2020, 143(8): 2454-2473. DOI: 10.1093/brain/awaa200.
[44]
XIE K, ROYER J, LARIVIERE S, et al. Atypical intrinsic neural timescales in temporal lobe epilepsy[J]. Epilepsia, 2023, 64(4): 998-1011. DOI: 10.1111/epi.17541.
[45]
ADEL S A A, TREIT S, ABD WAHAB W, et al. Longitudinal hippocampal diffusion-weighted imaging and T2 relaxometry demonstrate regional abnormalities which are stable and predict subfield pathology in temporal lobe epilepsy[J]. Epilepsia Open, 2023, 8(1): 100-112. DOI: 10.1002/epi4.12679.
[46]
KO A L, TONG A P S, MOSSA-BASHA M, et al. Effects of laser interstitial thermal therapy for mesial temporal lobe epilepsy on the structural connectome and its relationship to seizure freedom[J]. Epilepsia, 2022, 63(1): 176-189. DOI: 10.1111/epi.17059.
[47]
KASA L W, PETERS T, MIRSATTARI S M, et al. The role of the temporal pole in temporal lobe epilepsy: A diffusion kurtosis imaging study[J]. Neuroimage Clin, 2022, 36: 103201. DOI: 10.1016/j.nicl.2022.103201.
[48]
BAMBACH S, SMITH M, MORRIS P P, et al. Arterial Spin Labeling Applications in Pediatric and Adult Neurologic Disorders[J]. J Magn Reson Imaging, 2022, 55(3): 698-719. DOI: 10.1002/jmri.27438.
[49]
CHEN P Y, JIN C, YANG J. Application progress of arterial spin labeling in pediatric central nervous system[J]. Chin J Radiol, 2022, 56(1): 103-107. DOI: 10.3760/cma.j.cn112149-20201203-01276.
[50]
GUO X, XU S, WANG G, et al. Asymmetry of cerebral blood flow measured with three-dimensional pseudocontinuous arterial spin-labeling mr imaging in temporal lobe epilepsy with and without mesial temporal sclerosis[J]. J Magn Reson Imaging, 2015, 42(5): 1386-1397. DOI: 10.1002/jmri.24920.
[51]
STORTI S F, BOSCOLO GALAZZO I, DEL FELICE A, et al. Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy[J]. Neuroimage, 2014, 102Pt 1: 49-59. DOI: 10.1016/j.neuroimage.2013.06.028.
[52]
GAXIOLA-VALDEZ I, SINGH S, PERERA T, et al. Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI[J]. Brain, 2017, 140(11): 2895-2911. DOI: 10.1093/brain/awx241.
[53]
SONE D, MAIKUSA N, SATO N, et al. Similar and Differing Distributions Between (18)F-FDG-PET and Arterial Spin Labeling Imaging in Temporal Lobe Epilepsy[J]. Front Neurol, 2019, 10: 318. DOI: 10.3389/fneur.2019.00318.

PREV Research progress of brain network in obstructive sleep apnea
NEXT Research progress of magnetic resonance diffusion imaging in glioma grading and IDH genotype prediction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn