Share:
Share this content in WeChat
X
Reviews
Research progress of magnetic resonance diffusion imaging in glioma grading and IDH genotype prediction
ZHANG Chi  GAO Yang 

Cite this article as: ZHANG C, GAO Y. Research progress of magnetic resonance diffusion imaging in glioma grading and IDH genotype prediction[J]. Chin J Magn Reson Imaging, 2023, 14(7): 149-154. DOI:10.12015/issn.1674-8034.2023.07.027.


[Abstract] Glioma is the most common intracranial malignant tumor, and the treatment and prognosis of different grades of glioma are obviously different. With the update of World Health Organization (WHO) classification in 2021, the role of isocitrate dehydrogenase (IDH) is emphasized. IDH is an important molecular index in the genetic characteristics of glioma, and the different states of IDH are of great significance to the surgical methods and prognosis of glioma patients. With the development of multi-modal MRI, various functional imaging techniques have been used to evaluate glioma grading, predict genotyping and evaluate prognosis, with considerable accuracy and practicability. This article mainly reviews the applications of different diffusion MRI (dMRI) techniques (diffusion tensor imaging, diffusion tensor imaging, diffusion kurtosis imaging, neurite orientation dispersion and density imaging, mean apparent propagator-MRI) in glioma classification and molecular genotype prediction, in order to further reveal the pathophysiological mechanism of glioma patients and provide ideas and directions for the follow-up diagnosis and treatment process and improving the prognosis of patients.
[Keywords] glioma;genotyping;magnetic resonance imaging;diffusion magnetic resonance imaging;neurite orientation dispersion and density imaging;mean apparent propagator-magnetic resonance imaging

ZHANG Chi   GAO Yang*  

Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, China

Corresponding author: Gao Y, E-mail: 1390903990@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Inner Mongolia Autonomous Region Science and Technology Plan Project (No. 2019GG047).
Received  2023-03-08
Accepted  2023-06-25
DOI: 10.12015/issn.1674-8034.2023.07.027
Cite this article as: ZHANG C, GAO Y. Research progress of magnetic resonance diffusion imaging in glioma grading and IDH genotype prediction[J]. Chin J Magn Reson Imaging, 2023, 14(7): 149-154. DOI:10.12015/issn.1674-8034.2023.07.027.

[1]
GBD 2016 Brain and Other CNS Cancer Collaborators. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(4): 376-393. DOI: 10.1016/s1474-4422(18)30468-x.
[2]
SMITS M. MRI biomarkers in neuro-oncology[J]. Nat Rev Neurol, 2021, 17(8): 486-500. DOI: 10.1038/s41582-021-00510-y.
[3]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[4]
HARTMANN C, HENTSCHEL B, WICK W, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas[J]. Acta Neuropathol, 2010, 120(6): 707-718. DOI: 10.1007/s00401-010-0781-z.
[5]
LIN K, CIDAN W, QI Y, et al. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging[J]. Med Phys, 2022, 49(7): 4419-4429. DOI: 10.1002/mp.15648.
[6]
GAO L Y, LI Y H, LI L, et al. Multi-parameter diffusion-weighted magnetic resonance imaging for the evaluation of glioma IDH1 genotype and tumor proliferative activity[J]. Radiol Pract, 2023, 38(1): 39-46. DOI: 10.13609/j.cnki.1000-0313.2023.01.008.
[7]
FORDHAM A J, HACHERL C C, PATEL N, et al. Differentiating Glioblastomas from Solitary Brain Metastases: An Update on the Current Literature of Advanced Imaging Modalities[J/OL]. Cancers (Basel), 2021, 13(12): 2960 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/34199151/. DOI: 10.3390/cancers13122960.
[8]
LI G, LI L, LI Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas[J]. Brain, 2022, 145(3): 1151-1161. DOI: 10.1093/brain/awab340.
[9]
KIM M, JUNG S Y, PARK J E, et al. Diffusion-and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma[J]. Eur Radiol, 2020, 30(4): 2142-2151. DOI: 10.1007/s00330-019-06548-3.
[10]
SERAI S D. Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging[J]. Pediatr Radiol, 2022, 52(2): 217-227. DOI: 10.1007/s00247-021-05042-7.
[11]
SOLIMAN R K, ESSA A A, ELHAKEEM A A S, et al. Texture analysis of apparent diffusion coefficient (ADC) map for glioma grading: Analysis of whole tumoral and peri-tumoral tissue[J]. Diagn Interv Imaging, 2021, 102(5): 287-295. DOI: 10.1016/j.diii.2020.12.001.
[12]
VAN DEN ELSHOUT R, SCHEENEN T W J, DRIESSEN C M L, et al. Diffusion imaging could aid to differentiate between glioma progression and treatment-related abnormalities: a meta-analysis[J/OL]. Insights Imaging, 2022, 13(1): 158 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/36194373/. DOI: 10.1186/s13244-022-01295-4.
[13]
WANG S K, HAN X J, ZHU J Y, et al. The value of diffusion-weighted imaging combined with diffusion kurtosis imaging in the graded diagnosis and prognostic evaluation of glioma[J]. Chin J Magn Reson Imaging, 2022, 13(9): 86-90, 99. DOI: 10.12015/issn.1674-8034.2022.09.016.
[14]
LI X, XIE J C, WANG J, et al. Application value of magnetic resonance MRS, DWI and SWI sequences in the graded diagnosis of glioma[J]. Chin Gen Med, 2022, 20(9): 1541-1544. DOI: 10.16766/j.cnki.issn.1674-4152.002644.
[15]
AL-AGHA M, ABUSHAB K, QUFFA K, et al. Efficiency of High and Standard b Value Diffusion-Weighted Magnetic Resonance Imaging in Grading of Gliomas[J/OL]. J Oncol, 2020, 2020: 6942406 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33005190/. DOI: 10.1155/2020/6942406.
[16]
THUST S C, MAYNARD J A, BENENATI M, et al. Regional and Volumetric Parameters for Diffusion-Weighted WHO Grade Ⅱ and Ⅲ Glioma Genotyping: A Method Comparison[J]. AJNR Am J Neuroradiol, 2021, 42(3): 441-447. DOI: 10.3174/ajnr.A6965.
[17]
MAYNARD J, OKUCHI S, WASTLING S, et al. World Health Organization Grade Ⅱ/Ⅲ Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient[J]. Radiology, 2020, 296(1): 111-121. DOI: 10.1148/radiol.2020191832.
[18]
ZHANG J, PENG H, WANG Y L, et al. Predictive Role of the Apparent Diffusion Coefficient and MRI Morphologic Features on IDH Status in Patients With Diffuse Glioma: A Retrospective Cross-Sectional Study[J/OL]. Front Oncol, 2021, 11: 640738 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/34055608/. DOI: 10.3389/fonc.2021.640738.
[19]
WANG L B, KARPOVA A, GRITSENKO M A, et al. Proteogenomic and metabolomic characterization of human glioblastoma[J/OL]. Cancer Cell, 2021, 39(4): 509-528.e20 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33577785/. DOI: 10.1016/j.ccell.2021.01.006.
[20]
LE RHUN E, PREUSSER M, ROTH P, et al. Molecular targeted therapy of glioblastoma[J/OL]. Cancer Treat Rev, 2019, 80: 101896 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/28863449/. DOI: 10.1016/j.ctrv.2019.101896.
[21]
ZHAO H, BAI Y, WANG M Y. Advances in multimodal magnetic resonance imaging in genotyping and prognostic evaluation of glioma[J]. Chin J Magn Reson Imaging, 2021, 12(9): 98-102. DOI: 10.12015/issn.1674-8034.2021.09.025.
[22]
PODWALSKI P, SZCZYGIEŁ K, TYBURSKI E, et al. Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis[J]. Pharmacol Rep, 2021, 73(1): 43-56. DOI: 10.1007/s43440-020-00177-0.
[23]
ZENG S X, WANG C W, PENG S H. The application value of DTI in the differential diagnosis of grade Ⅱ and Ⅲ glioma[J]. J Clin Radiol, 2020, 39(7): 1253-1257. DOI: 10.13437/j.cnki.jcr.2020.07.004.
[24]
POGOSBEKIAN E L, PRONIN I N, ZAKHAROVA N E, et al. Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading[J]. Neuroradiology, 2021, 63(8): 1241-1251. DOI: 10.1007/s00234-020-02613-7.
[25]
LI Z Y, QIAN H F, SUN S J, et al. Application of magnetic resonance perfusion-weighted imaging and diffusion tensor imaging in the graded diagnosis of glioma[J]. Chin Gen Med, 2017, 15(6): 1013-1015. DOI: 10.16766/j.cnki.issn.1674-4152.2017.06.032.
[26]
HUANG Z, LU C, LI G, et al. Prediction of Lower Grade Insular Glioma Molecular Pathology Using Diffusion Tensor Imaging Metric-Based Histogram Parameters[J/OL]. Front Oncol, 2021, 11: 627202 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33777772/. DOI: 10.3389/fonc.2021.627202.
[27]
TAN Y, ZHANG H, WANG X, et al. Comparing the value of DKI and DTI in detecting isocitrate dehydrogenase genotype of astrocytomas[J]. Clin Radiol, 2019, 74(4): 314-320. DOI: 10.1016/j.crad.2018.12.004.
[28]
LUO Z Q, LIU X X, LI J R, et al. Prediction of IDH genotype in WHO grade Ⅱ/Ⅲ diffuse glioma using histogram analysis based on DTI[J]. J Clin Radiol, 2021, 40(5): 870-874. DOI: 10.13437/j.cnki.jcr.2021.05.008.
[29]
XIONG J, TAN W, WEN J, et al. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours[J]. Eur Radiol, 2016, 26(6): 1705-1715. DOI: 10.1007/s00330-015-4025-4.
[30]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[31]
FIEREMANS E, JENSEN J H, HELPERN J A. White matter characterization with diffusional kurtosis imaging[J]. Neuroimage, 2011, 58(1): 177-188. DOI: 10.1016/j.neuroimage.2011.06.006.
[32]
LUAN J, WU M, WANG X, et al. The diagnostic value of quantitative analysis of ASL, DSC-MRI and DKI in the grading of cerebral gliomas: a meta-analysis[J/OL]. Radiat Oncol, 2020, 15(1): 204 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/32831106/. DOI: 10.1186/s13014-020-01643-y.
[33]
ABDALLA G, DIXON L, SANVERDI E, et al. The diagnostic role of diffusional kurtosis imaging in glioma grading and differentiation of gliomas from other intra-axial brain tumours: a systematic review with critical appraisal and meta-analysis[J]. Neuroradiology, 2020, 62(7): 791-802. DOI: 10.1007/s00234-020-02425-9.
[34]
SU C, CHEN X, LIU C, et al. T2-FLAIR, DWI and DKI radiomics satisfactorily predicts histological grade and Ki-67 proliferation index in gliomas[J/OL]. Am J Transl Res, 2021, 13(8): 9182-9194 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/34540034/.
[35]
ZHANG J, JIANG J, ZHAO L, et al. Survival prediction of high-grade glioma patients with diffusion kurtosis imaging[J/OL]. Am J Transl Res, 2019, 11(6): 3680-3688 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/31312379/.
[36]
ZHANG H, SCHNEIDER T, WHEELER-KINGSHOTT C A, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. Neuroimage, 2012, 61(4): 1000-1016. DOI: 10.1016/j.neuroimage.2012.03.072.
[37]
JU C, WANG M, WANG H. Advances in the study of glioma grading by directional diffusion and density imaging of magnetic resonance neurite[J]. Chin J Magn Reson Imaging, 2021, 12(4): 100-102, 110. DOI: 10.12015/issn.1674-8034.2021.04.025.
[38]
ARRIBARAT G, DE BARROS A, PéRAN P. Modern Brainstem MRI Techniques for the Diagnosis of Parkinson's Disease and Parkinsonisms[J/OL]. Front Neurol, 2020, 11: 791 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/20736190/. DOI: 10.3389/fneur.2020.00791.
[39]
WOOD H. NODDI reveals brain microstructural changes in multiple sclerosis[J/OL]. Nat Rev Neurol, 2022, 18(1): 1 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/34880470/. DOI: 10.1038/s41582-021-00600-x.
[40]
PARK M, KIM J W, AHN S J, et al. Evaluation of brain tumors using NODDI technique: A promising tool[J]. J Neuroradiol, 2020, 47(3): 185-186. DOI: 10.1016/j.neurad.2020.04.001.
[41]
ZHAO J, LI J B, WANG J Y, et al. Quantitative analysis of neurite orientation dispersion and density imaging in grading gliomas and detecting IDH-1 gene mutation status[J]. Neuroimage Clin, 2018, 19: 174-181. DOI: 10.1016/j.nicl.2018.04.011.
[42]
WANG M, YAO J Q, MA D H, et al. Application of neurite directional dispersion and density imaging in preoperative grading of glioma[J]. J Molecular Imaging, 2021, 44(1): 36-40. DOI: 10.12122/j.issn.1674-4500.2021.01.07.
[43]
GAO A, ZHANG H, YAN X, et al. Whole-Tumor Histogram Analysis of Multiple Diffusion Metrics for Glioma Genotyping[J/OL]. Radiology, 2022, 302(3): E16 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/34874198/. DOI: 10.1148/radiol.219034.
[44]
CHUNG A W, SEUNARINE K K, CLARK C A. NODDI reproducibility and variability with magnetic field strength: A comparison between 1.5 T and 3 T[J]. Hum Brain Mapp, 2016, 37(12): 4550-4565. DOI: 10.1002/hbm.23328.
[45]
JIANG R, HU X, DENG K, et al. Neurite orientation dispersion and density imaging in evaluation of high-grade glioma-induced corticospinal tract injury[J/OL]. Eur J Radiol, 2021, 140: 109750 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33991969/. DOI: 10.1016/j.ejrad.2021.109750.
[46]
MAO J, ZENG W, ZHANG Q, et al. Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models[J/OL]. BMC Med Imaging, 2020, 20(1): 124 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33228564/. DOI: 10.1186/s12880-020-00524-w.
[47]
FIGINI M, RIVA M, GRAHAM M, et al. Prediction of Isocitrate Dehydrogenase Genotype in Brain Gliomas with MRI: Single-Shell versus Multishell Diffusion Models[J]. Radiology, 2018, 289(3): 788-796. DOI: 10.1148/radiol.2018180054.
[48]
ÖZARSLAN E, KOAY C G, SHEPHERD T M, et al. Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure[J]. Neuroimage, 2013, 78: 16-32. DOI: 10.1016/j.neuroimage.2013.04.016.
[49]
WANG P, WENG L, XIE S, et al. Primary application of mean apparent propagator-MRI diffusion model in the grading of diffuse glioma[J/OL]. Eur J Radiol, 2021, 138: 109622 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33721768/. DOI: 10.1016/j.ejrad.2021.109622.
[50]
WANG P, HE J, MA X, et al. Applying MAP-MRI to Identify the WHO Grade and Main Genetic Features of Adult-type Diffuse Gliomas: A Comparison of Three Diffusion-weighted MRI Models[J]. Acad Radiol, 2023, 30(7): 1238-1246. DOI: 10.1016/j.acra.2022.10.009.
[51]
SUN Y, SU C, DENG K, et al. Mean apparent propagator-MRI in evaluation of glioma grade, cellular proliferation, and IDH-1 gene mutation status[J]. Eur Radiol, 2022, 32(6): 3744-3754. DOI: 10.1007/s00330-021-08522-4.
[52]
WANG P, GAO E, QI J, et al. Quantitative analysis of mean apparent propagator-magnetic resonance imaging for distinguishing glioblastoma from solitary brain metastasis[J/OL]. Eur J Radiol, 2022, 154: 110430 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/35809490/. DOI: 10.1016/j.ejrad.2022.110430.
[53]
MUFTULER L T, NENCKA A S, KOCH K M. Diffusion propagator metrics are biased when simultaneous multi-slice acceleration is used[J]. Magn Reson Imaging, 2022, 86: 46-54. DOI: 10.1016/j.mri.2021.11.003.

PREV Research progress of quantitative MRI technique in temporal lobe epilepsy
NEXT Research advances of DWI in response prediction of nasopharyngeal carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn