Share:
Share this content in WeChat
X
Reviews
Research advances of DWI in response prediction of nasopharyngeal carcinoma
SU Xiaohong  JIN Guanqiao 

Cite this article as: SU X H, JIN G Q. Research advances of DWI in response prediction of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(7): 155-159. DOI:10.12015/issn.1674-8034.2023.07.028.


[Abstract] Nasopharyngeal carcinoma (NPC) is treated differently depending on its stage, early prediction of curative effect enables timely adjustment of treatment plan and rescue therapy. Diffusion weighted imaging (DWI) can detect the degree of water molecules diffusion to reveal additional information on tumor microstructure. The apparent diffusion coefficient (ADC) obtained by DWI can quantitatively describe the speed and range of the diffusion movement of water molecules in the human body, and interpret disease information more intuitively, playing an important role in the response prediction of NPC. We briefly introduced DWI and its related techniques, such as incoherent motion DWI, diffusion kurtosis imaging and readout segmentation of long variable echo-trains, and reviews the progress of its and related radiomics studies in predicting the response of NPC in this paper, in order to provide reference value for clinicians to make treatment decisions and guide the future research direction.
[Keywords] nasopharyngeal carcinoma;diffusion weighted imaging;apparent diffusion coefficient;response prediction;magnetic resonance imaging;intravoxel incoherent motion diffusion-weighted imaging;diffusional kurtosis imaging;radiomics

SU Xiaohong   JIN Guanqiao*  

Department of Radiology, Affiliated Cancer Hospital of Guangxi Medical University, Guangxi Clinical Medical Research Center of Imaging Medicine, Guangxi Key Clinical Specialty (Medical Imaging Department), Dominant Cultivation Discipline of Affiliated Cancer Hospital of Guangxi Medical University (Medical Imaging Department), Nanning 530021, China

Corresponding author: Jin GQ, E-mail: jinguanqiao77@gxmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81760533); Guangxi Natural Science Fundation (No. 2018GXNSFAA281095).
Received  2022-09-27
Accepted  2023-06-26
DOI: 10.12015/issn.1674-8034.2023.07.028
Cite this article as: SU X H, JIN G Q. Research advances of DWI in response prediction of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(7): 155-159. DOI:10.12015/issn.1674-8034.2023.07.028.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
CHEN Y P, CHAN A T C, LE Q T, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. DOI: 10.1016/s0140-6736(19)30956-0.
[3]
BOSSI P, CHAN A T, LICITRA L, et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2021, 32(4): 452-465. DOI: 10.1016/j.annonc.2020.12.007.
[4]
TANG L, ZHOU X J. Diffusion MRI of cancer: from low to high b-values[J]. J Magn Reson Imaging, 2019, 49(1): 23-40. DOI: 10.1002/jmri.26293.
[5]
KISELEV V G. Microstructure with diffusion MRI: what scale we are sensitive to?[J/OL]. J Neurosci Methods, 2021, 347: 108910 [2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/32798530/. DOI: 10.1016/j.jneumeth.2020.108910.
[6]
CHEN Y B, LIU X Y, ZHENG D C, et al. Diffusion-weighted magnetic resonance imaging for early response assessment of chemoradiotherapy in patients with nasopharyngeal carcinoma[J]. Magn Reson Imaging, 2014, 32(6): 630-637. DOI: 10.1016/j.mri.2014.02.009.
[7]
XU J F, ZHANG K, WANG H Y, et al. Clinical application of diffusion-weighted magnetic resonance imaging in radiotherapy for nasopharyngeal carcinoma[J]. J Xray Sci Technol, 2019, 27(2): 297-306. DOI: 10.3233/XST-180441.
[8]
HONG J, YAO Y, ZHANG Y, et al. Value of magnetic resonance diffusion-weighted imaging for the prediction of radiosensitivity in nasopharyngeal carcinoma[J]. Otolaryngol Head Neck Surg, 2013, 149(5): 707-713. DOI: 10.1177/0194599813496537.
[9]
ZHENG D C, CHEN Y B, CHEN Y, et al. Early assessment of induction chemotherapy response of nasopharyngeal carcinoma by pretreatment diffusion-weighted magnetic resonance imaging[J]. J Comput Assist Tomogr, 2013, 37(5): 673-680. DOI: 10.1097/RCT.0b013e31829a2599.
[10]
GUO X H, KONG X L, TIAN X C, et al. Value of magnetic resonance diffusion-weighted imaging for the prediction of chemoradiotheray efficacy in nasopharyngeal carcinoma[J]. J Clin Radiol, 2017, 36(1): 28-33. DOI: 10.3874/j.issn.1674-1897.2014.03.Z0306
[11]
HE Y, LIU Q M, LIU L J, et al. Value of the difference of apparent diffusion coefficient in predicting the short-term outcome in patients with nasopharyngeal carcinoma after concurrent chemoradiotherapy[J]. J Clin Radiol, 2021, 40(8): 1475-1479. DOI: 10.13437/j.cnki.jcr.2021.08.008.
[12]
FEDERAU C. Measuring perfusion[J]. Magn Reson Imaging Clin N Am, 2021, 29(2): 233-242. DOI: 10.1016/j.mric.2021.01.003.
[13]
HOU J, YU X P, HU Y, et al. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma[J/OL]. Medicine (Baltimore), 2016, 95(35): e4320 [2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/27583847/. DOI: 10.1097/MD.0000000000004320.
[14]
XIAO Y P, CHEN Y, CHEN Y B, et al. Longitudinal assessment of intravoxel incoherent motion diffusion weighted imaging in evaluating the radio-sensitivity of nasopharyngeal carcinoma treated with intensity-modulated radiation therapy[J]. Cancer Res Treat, 2019, 51(1): 345-356. DOI: 10.4143/crt.2018.089.
[15]
XIAO Y P, PAN J J, CHEN Y B, et al. Intravoxel incoherent motion-magnetic resonance imaging as an early predictor of treatment response to neoadjuvant chemotherapy in locoregionally advanced nasopharyngeal carcinoma[J/OL]. Medicine (Baltimore), 2015, 94(24): e973 [2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/26091468/. DOI: 10.1097/MD.0000000000000973.
[16]
YU X P, HOU J, LI F P, et al. Intravoxel incoherent motion MRI for predicting early response to induction chemotherapy and chemoradiotherapy in patients with nasopharyngeal carcinoma[J]. J Magn Reson Imaging, 2016, 43(5): 1179-1190. DOI: 10.1002/jmri.25075.
[17]
QIN Y H, YU X P, HOU J, et al. Predicting chemoradiotherapy response of nasopharyngeal carcinoma using texture features based on intravoxel incoherent motion diffusion-weighted imaging[J/OL]. Medicine, 2018, 97(30): e11676 [2022-09-26]. https://journals.lww.com/md-journal/Fulltext/2018/07270/Predicting_chemoradiotherapy_response_of.77.aspx. DOI: 10.1097/md.0000000000011676.
[18]
ZHANG Q, QIAN L T, DONG J N, et al. To investigate the value of IVIM-DWI and DCE-MRI quantitative parameters in early response prediction of nasopharyngeal carcinoma[J]. J Clin Radiol, 2019, 38(3): 426-430. DOI: 10.13437/j.cnki.jcr.2019.03.015.
[19]
GUO T T, LIU S, ZHOU N, et al. Intravoxel incoherent motion magnetic resonance imaging for evaluating the efficacy of concurrent chemoradiotherapy in nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2017, 8(4): 254-259. DOI: 10.12015/issn.1674-8034.2017.04.004.
[20]
CHEN W B, CAI G H, ZHANG B, et al. To investigate the sensitivity of chemoradiotherapy on nasopharyngeal carcinoma using intravoxel incoherent motion MRI[J]. Chin J Radiol, 2019, 53(7): 549-554. DOI: 10.3760/cma.j.issn.1005?1201.2019.07.004.
[21]
RIEXINGER A J, MARTIN J, RAUH S, et al. On the field strength dependence of bi-and triexponential intravoxel incoherent motion (IVIM) parameters in the liver[J]. J Magn Reson Imaging, 2019, 50(6): 1883-1892. DOI: 10.1002/jmri.26730.
[22]
FENG Z Y, MIN X D, WANG L, et al. Effects of echo time on IVIM quantification of the normal prostate[J/OL]. Sci Rep, 2018, 8: 2572 [2022-09-26]. https://www.nature.com/articles/s41598-018-19150-2. DOI: 10.1038/s41598-018-19150-2.
[23]
FÜHRES T, RIEXINGER A J, LOH M, et al. Echo time dependence of biexponential and triexponential intravoxel incoherent motion parameters in the liver[J]. Magn Reson Med, 2022, 87(2): 859-871. DOI: 10.1002/mrm.28996.
[24]
ZHENG C J, XIAO B H, HUANG H, et al. Bi-exponential fitting excluding b=0 data improves the scan-rescan stability of liver IVIM parameter measures and particularly so for the perfusion fraction[J]. Quant Imaging Med Surg, 2022, 12(6): 3288-3299. DOI: 10.21037/qims-2022-02.
[25]
NORRIS C D, QUICK S E, PARKER J G, et al. Diffusion MR imaging in the head and neck: principles and applications[J]. Neuroimaging Clin N Am, 2020, 30(3): 261-282. DOI: 10.1016/j.nic.2020.04.001.
[26]
MAO W, DING Y Q, DING X Q, et al. Pathological assessment of chronic kidney disease withDWI: is there an added value for diffusion kurtosis imaging?[J]. J Magn Reson Imaging, 2021, 54(2): 508-517. DOI: 10.1002/jmri.27569.
[27]
ZHENG X, CHEN Y B, ZHENG D C, et al. Diffusion kurtosis imaging and tumour microstructure for monitoring response to radiotherapy in human nasopharyngeal carcinoma xenografts[J]. Jpn J Clin Oncol, 2020, 50(5): 548-555. DOI: 10.1093/jjco/hyaa002.
[28]
HUANG W Y, LI M M, LIN S M, et al. In vivo imaging markers for prediction of radiotherapy response in patients with nasopharyngeal carcinoma: resolve DWI versus DKI[J/OL]. Sci Rep, 2018, 8: 15861 [2022-09-26]. https://www.nature.com/articles/s41598-018-34072-9. DOI: 10.1038/s41598-018-34072-9.
[29]
WU G, WANG F, LIN S M, et al. The value of diffusion kurtosis imaging to predict early radiotherapy response in nasopharyngeal carcinoma patients[J]. China Oncol, 2018, 28(5): 369-375. DOI: 10.19401/j.cnki.1007-3639.2018.05.008
[30]
CHEN Y B, REN W, ZHENG D C, et al. Diffusion kurtosis imaging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients[J]. J Magn Reson Imaging, 2015, 42(5): 1354-1361. DOI: 10.1002/jmri.24910.
[31]
ZHENG D C, LAI G J, CHEN Y, et al. Integrating dynamic contrast-enhanced magnetic resonance imaging and diffusion kurtosis imaging for neoadjuvant chemotherapy assessment of nasopharyngeal carcinoma[J]. J Magn Reson Imaging, 2018, 48(5): 1208-1216. DOI: 10.1002/jmri.26164.
[32]
ZHAO D W, FAN W J, MENG L L, et al. Comparison of the pre-treatment functional MRI metrics' efficacy in predicting Locoregionally advanced nasopharyngeal carcinoma response to induction chemotherapy[J/OL]. Cancer Imaging, 2021, 21(1): 59 [2022-09-26]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-021-00428-0. DOI: 10.1186/s40644-021-00428-0.
[33]
ZHANG F, NING L P, O'DONNELL L J, et al. MK-curve- Characterizing the relation between mean kurtosis and alterations in the diffusion MRI signal[J/OL]. Neuroimage, 2019, 196: 68-80 [2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/30978492/. DOI: 10.1016/j.neuroimage.2019.04.015.
[34]
DONNERS R. Editorial comment on "diffusion-weighted MRI to assess sacroiliitis: improved image quality and diagnostic performance of readout-segmented echo-planar imaging (EPI) over conventional single-shot EPI"[J/OL]. Am J Roentgenol, 2021, 217(2): 459 [2022-09-26]. https://www.ajronline.org/doi/10.2214/AJR.20.24707. DOI: 10.2214/ajr.20.24707.
[35]
YAMAMOTO H, IIMA M, KISHIMOTO Y, et al. Preoperative localization of parathyroid adenomas with diffusion MR imaging: readout-segmented versus single-shot echo-planar imaging[J]. Magn Reson Med Sci, 2023, 22(1): 79-85. DOI: 10.2463/mrms.mp.2021-0149.
[36]
KISHIMOTO A O, KATAOKA M, IIMA M, et al. The comparison of high-resolution diffusion weighted imaging (DWI) with high-resolution contrast-enhanced MRI in the evaluation of breast cancers[J/OL]. Magn Reson Imaging, 2020, 71: 161-169 [2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/32320723/. DOI: 10.1016/j.mri.2020.03.007.
[37]
SONG C R, CHENG P, CHENG J L, et al. Differential diagnosis of nasopharyngeal carcinoma and nasopharyngeal lymphoma based on DCE-MRI and RESOLVE-DWI[J]. Eur Radiol, 2020, 30(1): 110-118. DOI: 10.1007/s00330-019-06343-0.
[38]
YU J Y, ZHANG D, HUANG X L, et al. Quantitative analysis of DCE-MRI and RESOLVE-DWI for differentiating nasopharyngeal carcinoma from nasopharyngeal lymphoid hyperplasia[J].J Med Syst, 2020, 44(4): 1-7. DOI: 10.1007/s10916-020-01549-y.
[39]
HU Q Y, WANG G J, SONG X Y, et al. Machine learning based on MRI DWI radiomics features for prognostic prediction in nasopharyngeal carcinoma[J/OL]. Cancers, 2022, 14(13): 3201 [2022-09-26]. https://www.mdpi.com/2072-6694/14/13/3201. DOI: 10.3390/cancers14133201.
[40]
ARIYA W, SUZUKI R, HASEGAWA T. The influence of the decrease in data acquisition ratio resulted from readout partial Fourier during readout segmented EPI on ADC map: a phantom study[J]. Nihon Hoshasen Gijutsu Gakkai Zasshi, 2019, 75(2): 133-142. DOI: 10.6009/jjrt.2019_JSRT_75.2.133.
[41]
CHEN H, HE Y Y, ZHANG H T, et al. A pilot study on application of readout partial Fourier technique in RESOLVE-IVIM imaging of nasopha-ryngeal carcinoma[J]. Radiol Pract, 2022, 37(7)824-828. DOI: 10.13609/j.cnki.1000-0313.2022.07.005
[42]
TU C R, SHEN H S, LIU D H, et al. Simultaneous multi-slice readout-segmentation of long variable echo-trains for accelerated diffusion-weighted imaging of nasopharyngeal carcinoma: a feasibility and optimization study[J/OL]. Clin Imaging, 2021, 79: 119-124 [2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/33940488/. DOI: 10.1016/j.clinimag.2021.04.009.
[43]
LI Q, JIANG T T, WANG T T, et al. Improved readout-segmented echo-planner diffusion-weighted magnetic resonance imaging of nasopharyngeal carcinoma using simultaneous multislice acquisitions at 3 T[J]. J Comput Assist Tomogr, 2022, 46(5): 815-822. DOI: 10.1097/RCT.0000000000001327.
[44]
SU T, CHEN Y, ZHANG Z H, et al. Optimization of simultaneous multislice, readout-segmented echo planar imaging for accelerated diffusion-weighted imaging of the head and neck: a preliminary study[J/OL]. Acad Radiol, 2020, 27(11): e245-e253 [2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/32005557/. DOI: 10.1016/j.acra.2019.12.008.
[45]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[46]
WANG X, LIANG L K, SU X H, et al. Value of MRI multi-sequence model fusion radiomics in predicting the response to concurrent chemoradiotherapy in patients with locally advanced nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(6): 10-16. DOI: 10.12015/issn.1674-8034.2022.06.003
[47]
ZHENG D C, XU S G, LAI G J, et al. The performance of pretreatment MRI based nomogram in neoadjuvant chemotherapy response prediction in nasopharyngeal carcinoma: a primary study[J]. Chin J Magn Reson Imaging, 2021, 12(4): 23-29. DOI: 10.12015/issn.1674-8034.2021.04.005
[48]
ZHANG X X, WANG Y C, ZHANG J, et al. Development of a MRI-based radiomics nomogram for prediction of response of patients with muscle-invasive bladder cancer to neoadjuvant chemotherapy[J/OL]. Front Oncol, 2022, 12: 878499 [2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/35646654/. DOI: 10.3389/fonc.2022.878499.
[49]
NARDONE V, REGINELLI A, GRASSI R, et al. Ability of delta radiomics to predict a complete pathological response in patients with loco-regional rectal cancer addressed to neoadjuvant chemo-radiation and surgery[J/OL]. Cancers (Basel), 2022, 14(12): 3004 [2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/35740669/. DOI: 10.3390/cancers14123004.
[50]
NEMETH A, CHAUDET P, LEPORQ B, et al. Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer[J]. MAGMA, 2021, 34(6): 833-844. DOI: 10.1007/s10334-021-00941-0.
[51]
LIU J, MAO Y, LI Z J, et al. Use of texture analysis based on contrast-enhanced MRI to predict treatment response to chemoradiotherapy in nasopharyngeal carcinoma[J]. J Magn Reson Imaging, 2016, 44(2): 445-455. DOI: 10.1002/jmri.25156.
[52]
TU N, ZHONG Y, WANG X, et al. Treatment response prediction of nasopharyngeal carcinoma based on histogram analysis of diffusional kurtosis imaging[J]. AJNR Am J Neuroradiol, 2019, 40(2): 326-333. DOI: 10.3174/ajnr.A5925.

PREV Research progress of magnetic resonance diffusion imaging in glioma grading and IDH genotype prediction
NEXT Research progress in evaluating microvascular metastases patterns of hepatocellular carcinoma by Gd-EOB-DTPA enhanced MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn