Share:
Share this content in WeChat
X
Reviews
Research progress in evaluating microvascular metastases patterns of hepatocellular carcinoma by Gd-EOB-DTPA enhanced MRI
GAO Miaohui  ZHOU Yiran  ZHU Shaocheng 

Cite this article as: GAO M H, ZHOU Y R, ZHU S C. Research progress in evaluating microvascular metastases patterns of hepatocellular carcinoma by Gd-EOB-DTPA enhanced MRI[J]. Chin J Magn Reson Imaging, 2023, 14(7): 160-165. DOI:10.12015/issn.1674-8034.2023.07.029.


[Abstract] Microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC), two patterns of blood-borne metastases underlying distinct microvascular structures and molecular mechanisms in hepatocellular carcinoma (HCC) tissues, are closely related to the postoperative recurrence and treatment of patients. Since the diagnosis is currently mainly confirmed by histopathologic examination after surgical resection, it is important to find a non-invasive preoperative assessment of MVI and VETC. It has been proposed that many imaging features based on gadolinium ethoxybenzyl diethyle netriamine pentaacetic acid (Gd-EOB-DTPA) enhanced MRI are used to predict MVI and VETC. On this basis, the radiomics and artificial intelligence developed further improve the accuracy of prediction and become a research hotspot in recent years, various radiomics models have been established to predict microvascular metastasis patterns in HCC. This article will review the current research status of Gd-EOB-DTPA enhanced MRI imaging features and related radiomics and artificial intelligence technology for evaluating MVI and VETC, attempt to explore the main limitations and future research directions of each technology in clinical practice, in order to promote the development of related research, help clinical doctors choose appropriate treatment methods and improve survival of patients.
[Keywords] hepatocellular carcinoma;microvascular invasion;vessels encapsulating tumor clusters;magnetic resonance imaging;Gd-EOB-DTPA;radiomics;artificial intelligence

GAO Miaohui1   ZHOU Yiran2   ZHU Shaocheng3*  

1 Department of Medical Imaging, Henan Provincial People's Hospital of Henan University, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital of Xinxiang Medical College, Xinxiang 453003, China

3 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

Corresponding author: Zhu SC, E-mail: zsc2686@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Special Project of Key R&D and Promotion in Henan Province (Scientific and Technological Research) (No. 212102310729).
Received  2022-12-30
Accepted  2023-06-25
DOI: 10.12015/issn.1674-8034.2023.07.029
Cite this article as: GAO M H, ZHOU Y R, ZHU S C. Research progress in evaluating microvascular metastases patterns of hepatocellular carcinoma by Gd-EOB-DTPA enhanced MRI[J]. Chin J Magn Reson Imaging, 2023, 14(7): 160-165. DOI:10.12015/issn.1674-8034.2023.07.029.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
MORSE M A, SUN W J, KIM R, et al. The role of angiogenesis in hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(3): 912-920. DOI: 10.1158/1078-0432.CCR-18-1254.
[3]
WOO H Y, RHEE H, YOO J E, et al. Lung and lymph node metastases from hepatocellular carcinoma: comparison of pathological aspects[J]. Liver Int, 2022, 42(1): 199-209. DOI: 10.1111/liv.15051.
[4]
FANG J H, ZHOU H C, ZHANG C, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner[J]. Hepatology, 2015, 62(2): 452-465. DOI: 10.1002/hep.27760.
[5]
CAI Y C, FU Y, LIU C C, et al. Stathmin 1 is a biomarker for diagnosis of microvascular invasion to predict prognosis of early hepatocellular carcinoma[J/OL]. Cell Death Dis, 2022, 13: 176 [2022-12-16]. https://doi.org/10.1038/s41419-022-04625-y. DOI: 10.1038/s41419-022-04625-y.
[6]
YAMASHITA Y I, BABA H. Vessels encapsulating tumor clusters in hepatocellular carcinoma: a unique and valuable pathological imaging[J]. Hepatobiliary Surg Nutr, 2020, 9(4): 484-487. DOI: 10.21037/hbsn.2019.11.16.
[7]
Department of Medical Affairs of National Health Commission of the People's Republic of China. Standardization for diagnosis and treatment of hepatocellular carcinoma (2019 edition)[J]. Chin J Dig Surg, 2020, 19(1): 1-20. DOI: 10.3760/cma.j.issn.1673-9752.2020.01.001.
[8]
PAN J L, LI W J, GU L J, et al. Performance of adding hepatobiliary phase image in magnetic resonance imaging for detection of hepatocellular carcinoma: a meta-analysis[J]. Eur Radiol, 2022, 32(11): 7883-7895. DOI: 10.1007/s00330-022-08826-z.
[9]
Liver Cancer Professional Committee of Chinese Anti-Cancer Association; Liver Cancer Study Group of Chinese Society of Hepatology, Pathology Professional Committee of Chinese Anti-Cancer Association, et al. Evidence-based practice guidelines for standardized pathological diagnosis of primary liver cancer in China: 2015 update[J]. Chin J Hepatol, 2015, 23(5): 321-327. DOI: 10.3760/cma.j.issn.1007-3418.2015.05.001.
[10]
CHEN Z H, ZHANG X P, WANG H, et al. Effect of microvascular invasion on the postoperative long-term prognosis of solitary small HCC: a systematic review and meta-analysis[J]. HPB (Oxford), 2019, 21(8): 935-944. DOI: 10.1016/j.hpb.2019.02.003.
[11]
JIANG H Y, WEI J W, FU F F, et al. Predicting microvascular invasion in hepatocellular carcinoma: a dual-institution study on gadoxetate disodium-enhanced MRI[J]. Liver Int, 2022, 42(5): 1158-1172. DOI: 10.1111/liv.15231.
[12]
LEE S, KANG T W, SONG K D, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/SLA.0000000000003268.
[13]
SUN Z, LI Z, SHI X L, et al. Anatomic versus non-anatomic resection of hepatocellular carcinoma with microvascular invasion: a systematic review and meta-analysis[J]. Asian J Surg, 2021, 44(9): 1143-1150. DOI: 10.1016/j.asjsur.2021.02.023.
[14]
AOKI T, KUBOTA K, HASEGAWA K, et al. Significance of the surgical hepatic resection margin in patients with a single hepatocellular carcinoma[J]. Br J Surg, 2020, 107(1): 113-120. DOI: 10.1002/bjs.11329.
[15]
HU H T, SHEN S L, WANG Z, et al. Peritumoral tissue on preoperative imaging reveals microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J]. Abdom Radiol (NY), 2018, 43(12): 3324-3330. DOI: 10.1007/s00261-018-1646-5.
[16]
ROAYAIE S, BLUME I N, THUNG S N, et al. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma[J]. Gastroenterology, 2009, 137(3): 850-855. DOI: 10.1053/j.gastro.2009.06.003.
[17]
RHEE H, AN C, KIM H Y, et al. Hepatocellular carcinoma with irregular rim-like arterial phase hyperenhancement: more aggressive pathologic features[J]. Liver Cancer, 2019, 8(1): 24-40. DOI: 10.1159/000488540.
[18]
CHEN J, MING X F, WANG Z, et al. Analysis of the performance of gadoxetic acid disodium MRI in predicting microvascular invasion of hepatocellular carcinoma[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 6128845 [2022-12-16]. https://doi.org/10.1155/2022/6128845. DOI: 10.1155/2022/6128845.
[19]
LEE S, KIM S H, LEE J E, et al. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma[J]. J Hepatol, 2017, 67(3): 526-534. DOI: 10.1016/j.jhep.2017.04.024.
[20]
WU Y, ZHU M L, LIU Y M, et al. Peritumoral imaging manifestations on Gd-EOB-DTPA-enhanced MRI for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J/OL]. Front Oncol, 2022, 12: 907076 [2022-12-16]. https://doi.org/10.3389/fonc.2022.907076. DOI: 10.3389/fonc.2022.907076.
[21]
CHOI J Y, LEE J M, SIRLIN C B. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. extracellular agents, hepatobiliary agents, and ancillary imaging features[J]. Radiology, 2014, 273(1): 30-50. DOI: 10.1148/radiol.14132362.
[22]
KIM K A, KIM M J, JEON H M, et al. Prediction of microvascular invasion of hepatocellular carcinoma: usefulness of peritumoral hypointensity seen on gadoxetate disodium-enhanced hepatobiliary phase images[J]. J Magn Reson Imaging, 2012, 35(3): 629-634. DOI: 10.1002/jmri.22876.
[23]
LIANG X, SHI S, GAO T. Preoperative gadoxetic acid-enhanced MRI predicts aggressive pathological features in LI-RADS category 5 hepatocellular carcinoma[J]. Clin Radiol, 2022, 77(9): 708-716. DOI: 10.1016/j.crad.2022.05.018.
[24]
TSUBOYAMA T, ONISHI H, KIM T, et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging: correlation with expression of sinusoidal and canalicular transporters and bile accumulation[J]. Radiology, 2010, 255(3): 824-833. DOI: 10.1148/radiol.10091557.
[25]
RAO C Y, WANG X Q, LI M D, et al. Value of T1 mapping on gadoxetic acid-enhanced MRI for microvascular invasion of hepatocellular carcinoma: a retrospective study[J/OL]. BMC Med Imaging, 2020, 20(1): 43 [2022-12-16]. https://doi.org/10.1186/s12880-020-00433-y. DOI: 10.1186/s12880-020-00433-y.
[26]
WEI Y, HUANG Z X, TANG H H, et al. IVIM improves preoperative assessment of microvascular invasion in HCC[J]. Eur Radiol, 2019, 29(10): 5403-5414. DOI: 10.1007/s00330-019-06088-w.
[27]
PARK H J, PARK B, LEE S S. Radiomics and deep learning: hepatic applications[J]. Korean J Radiol, 2020, 21(4): 387-401. DOI: 10.3348/kjr.2019.0752.
[28]
FENG S T, JIA Y M, LIAO B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8.
[29]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[30]
HU F, ZHANG Y H, LI M, et al. Preoperative prediction of microvascular invasion risk grades in hepatocellular carcinoma based on tumor and peritumor dual-region radiomics signatures[J/OL]. Front Oncol, 2022, 12: 853336 [2022-12-16]. https://doi.org/10.3389/fonc.2022.853336. DOI: 10.3389/fonc.2022.853336.
[31]
NEBBIA G, ZHANG Q, AREFAN D, et al. Pre-operative microvascular invasion prediction using multi-parametric liver MRI radiomics[J]. J Digit Imaging, 2020, 33(6): 1376-1386. DOI: 10.1007/s10278-020-00353-x.
[32]
XU X, ZHANG H L, LIU Q P, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144. DOI: 10.1016/j.jhep.2019.02.023.
[33]
ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
[34]
DING T, XU J, ZHANG Y, et al. Endothelium-coated tumor clusters are associated with poor prognosis and micrometastasis of hepatocellular carcinoma after resection[J]. Cancer, 2011, 117(21): 4878-4889. DOI: 10.1002/cncr.26137.
[35]
RENNE S L, WOO H Y, ALLEGRA S, et al. Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 183-195. DOI: 10.1002/hep.30814.
[36]
GUAN R G, LIN W P, ZOU J W, et al. Development and validation of a novel nomogram for predicting vessels that encapsulate tumor cluster in hepatocellular carcinoma[J/OL]. Cancer Control, 2022, 29: 10732748221102820 [2022-12-16]. https://doi.org/10.1177/10732748221102820. DOI: 10.1177/10732748221102820.
[37]
FAN Y F, YU Y X, HU M J, et al. Imaging features based on Gd-EOB-DTPA-enhanced MRI for predicting vessels encapsulating tumor clusters (VETC) in patients with hepatocellular carcinoma[J/OL]. Br J Radiol, 2021, 94(1119): 20200950 [2022-12-16]. https://doi.org/10.1259/bjr.20200950. DOI: 10.1259/bjr.20200950.
[38]
LAN C Y, LING B, GUO W W, et al. The relationship between vimentin protein expression in endothelial cells and contrast-enhanced ultrasound characters in VETC(+)hepatocellular carcinoma[J]. Chin J Oncol, 2018, 40(2): 105-109. DOI: 10.3760/cma.j.issn.0253-3766.2018.02.005.
[39]
FENG Z C, LI H L, ZHAO H F, et al. Preoperative CT for characterization of aggressive macrotrabecular-massive subtype and vessels that encapsulate tumor clusters pattern in hepatocellular carcinoma[J]. Radiology, 2021, 300(1): 219-229. DOI: 10.1148/radiol.2021203614.
[40]
CHERNYAK V, FOWLER K J, KAMAYA A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in At-risk patients[J]. Radiology, 2018, 289(3): 816-830. DOI: 10.1148/radiol.2018181494.
[41]
TANG A, SINGAL A G, MITCHELL D G, et al. Introduction to the liver imaging reporting and data system for hepatocellular carcinoma[J]. Clin Gastroenterol Hepatol, 2019, 17(7): 1228-1238. DOI: 10.1016/j.cgh.2018.10.014.
[42]
FAN Y F, YU Y X, WANG X M, et al. Texture analysis based on Gd-EOB-DTPA-enhanced MRI for identifying vessels encapsulating tumor clusters (VETC)-positive hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021, 8: 349-359. DOI: 10.2147/jhc.s293755.
[43]
YU Y X, FAN Y F, WANG X M, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(2): 959-970. DOI: 10.1007/s00330-021-08250-9.
[44]
SUN S W, LIU Q P, XU X, et al. Direct comparison of four presurgical stratifying schemes for prediction of microvascular invasion in hepatocellular carcinoma by gadoxetic acid-enhanced MRI[J]. J Magn Reson Imaging, 2020, 52(2): 433-447. DOI: 10.1002/jmri.27043.
[45]
LEI Z Q, LI J, WU D, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria[J]. JAMA Surg, 2016, 151(4): 356-363. DOI: 10.1001/jamasurg.2015.4257.
[46]
GIANNELLI G, KOUDELKOVA P, DITURI F, et al. Role of epithelial to mesenchymal transition in hepatocellular carcinoma[J]. J Hepatol, 2016, 65(4): 798-808. DOI: 10.1016/j.jhep.2016.05.007.
[47]
LU L H, WEI W, HUANG C Y, et al. A new horizon in risk stratification of hepatocellular carcinoma by integrating vessels that encapsulate tumor clusters and microvascular invasion[J]. Hepatol Int, 2021, 15(3): 651-662. DOI: 10.1007/s12072-021-10183-w.
[48]
LIN W P, XING K L, FU J C, et al. Development and validation of a model including distinct vascular patterns to estimate survival in hepatocellular carcinoma[J/OL]. JAMA Netw Open, 2021, 4(9): e2125055 [2022-12-16]. https://doi.org/10.1001/jamanetworkopen.2021.25055. DOI: 10.1001/jamanetworkopen.2021.25055.
[49]
YANG J W, DONG X, WANG G L, et al. Preoperative MRI features for characterization of vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma[J]. Abdom Radiol (NY), 2023, 48(2): 554-566. DOI: 10.1007/s00261-022-03740-w.
[50]
CHOY G, KHALILZADEH O, MICHALSKI M, et al. Current applications and future impact of machine learning in radiology[J]. Radiology, 2018, 288(2): 318-328. DOI: 10.1148/radiol.2018171820.
[51]
CHU T J, ZHAO C, ZHANG J, et al. Application of a convolutional neural network for multitask learning to simultaneously predict microvascular invasion and vessels that encapsulate tumor clusters in hepatocellular carcinoma[J]. Ann Surg Oncol, 2022, 29(11): 6774-6783. DOI: 10.1245/s10434-022-12000-6.

PREV Research advances of DWI in response prediction of nasopharyngeal carcinoma
NEXT Research progress of MRI based radiomics in lung cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn