Share:
Share this content in WeChat
X
Reviews
Research progress of MRI based radiomics in lung cancer
JIANG Yehai  PU Doudou  YU Nan 

Cite this article as: JIANG Y H, PU D D, YU Nan. Research progress of MRI based radiomics in lung cancer[J]. Chin J Magn Reson Imaging, 2023, 14(7): 166-170. DOI:10.12015/issn.1674-8034.2023.07.030.


[Abstract] Technologies such as computed tomography (CT), positron emission tomography, and magnetic resonance imaging (MRI) play an important role in the diagnosis, staging, treatment, postoperative monitoring, and response evaluation of lung cancer, providing anatomical and functional information about the phenotype of lung cancer. However, a large amount of genetic and prognostic information remains undiscovered. Radiomics can deeply mine high-dimensional data, reflecting deep biological information such as molecular and gene expression of lesions, which can help in the accurate prediction of lung cancer prognosis and treatment efficacy. In the past, lung cancer radiomics studies were mainly based on CT images. With the continuous improvement of lung MRI technology and its significant increase in soft tissue resolution, magnetic resonance imaging has also been widely used in lung cancer radiomics research. This article will introduce the model construction of MRI lung cancer radiomics and the application of radiomics in lung cancer differentiation, classification, pathological grading, gene expression, etc., and discuss the current limitations and prospects of lung MRI radiomics, in order to provide new methods for the precise diagnosis and treatment of lung cancer and promote the clinical application of radiomics research.
[Keywords] magnetic resonance imaging;radiomics;lung cancer;pulmonary nodules;feature extraction;gene phenotype;pathological grade

JIANG Yehai1   PU Doudou1   YU Nan1, 2*  

1 School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang 712046, China

2 Department of Medical Imaging, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China

Corresponding author: Yu N, E-mail: yunan0512@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Key Industry Innovation Chain of Shaanxi Science and Technology Department (No. 2021ZDLSF04-10); Basic Research Project of Shaanxi Science and Technology Department (No. 2022JM-453); National Innovation and Entrepreneurship Training Program for College Students (No. 202210716013).
Received  2022-11-29
Accepted  2023-06-26
DOI: 10.12015/issn.1674-8034.2023.07.030
Cite this article as: JIANG Y H, PU D D, YU Nan. Research progress of MRI based radiomics in lung cancer[J]. Chin J Magn Reson Imaging, 2023, 14(7): 166-170. DOI:10.12015/issn.1674-8034.2023.07.030.

[1]
MEIER-SCHROERS M, HOMSI R, GIESEKE J, et al. Lung cancer screening with MRI: evaluation of MRI for lung cancer screening by comparison of LDCT- and MRI-derived Lung-RADS categories in the first two screening rounds[J]. Eur Radiol, 2019, 29(2): 898-905. DOI: 10.1007/s00330-018-5607-8.
[2]
MEIER-SCHROERS M, HOMSI R, SCHILD H H, et al. Lung cancer screening with MRI: characterization of nodules with different non-enhanced MRI sequences[J]. Acta Radiol, 2019, 60(2): 168-176. DOI: 10.1177/0284185118778870.
[3]
KOO C W, LU A M, TAKAHASHI E A, et al. Can MRI contribute to pulmonary nodule analysis?[J/OL]. J Magn Reson Imaging, 2019, 49(7): e256-e264 [2022-11-28]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.26587. DOI: 10.1002/jmri.26587.
[4]
MEI C L, ZHANG L, ZHANG Z Y. Vomiting management and effect prediction after early chemotherapy of lung cancer with diffusion-weighted imaging under artificial intelligence algorithm and comfort care intervention[J/OL]. Comput Math Methods Med, 2022, 2022: 1-11 [2022-11-28]. https://www.hindawi.com/journals/cmmm/2022/1056910/. DOI: 10.1155/2022/1056910.
[5]
OHNO Y, TAKENAKA D, YOSHIKAWA T, et al. Efficacy of ultrashort echo time pulmonary MRI for lung nodule detection and lung-RADS classification[J]. Radiology, 2022, 302(3): 697-706. DOI: 10.1148/radiol.211254.
[6]
RENZ D M, HERRMANN K H, KRAEMER M, et al. Ultrashort echo time MRI of the lung in children and adolescents: comparison with non-enhanced computed tomography and standard post-contrast T1w MRI sequences[J]. Eur Radiol, 2022, 32(3): 1833-1842. DOI: 10.1007/s00330-021-08236-7.
[7]
USUDA K, IWAI S, YAMAGATA A, et al. Novel insights of T2-weighted imaging: significance for discriminating lung cancer from benign pulmonary nodules and masses[J/OL]. Cancers (Basel), 2021, 13(15): 3713 [2022-11-28]. https://pubmed.ncbi.nlm.nih.gov/34359616/. DOI: 10.3390/cancers13153713.
[8]
ZHENG Y, LI J, CHEN K, et al. Comparison of conventional DWI, intravoxel incoherent motion imaging, and diffusion kurtosis imaging in differentiating lung lesions[J/OL]. Front Oncol, 2021, 11: 815967 [2022-11-28]. https://pubmed.ncbi.nlm.nih.gov/35127530/. DOI: 10.3389/fonc.2021.815967.
[9]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[10]
BONEKAMP D, KOHL S, WIESENFARTH M, et al. Radiomic machine learning for characterization of prostate lesions with MRI: comparison to ADC values[J]. Radiology, 2018, 289(1): 128-137. DOI: 10.1148/radiol.2018173064.
[11]
FAN M, YUAN W, ZHAO W R, et al. Joint prediction of breast cancer histological grade and ki-67 expression level based on DCE-MRI and DWI radiomics[J]. IEEE J Biomed Health Inform, 2020, 24(6): 1632-1642. DOI: 10.1109/JBHI.2019.2956351.
[12]
KNIEP H C, MADESTA F, SCHNEIDER T, et al. Radiomics of brain MRI: utility in prediction of metastatic tumor type[J]. Radiology, 2019, 290(2): 479-487. DOI: 10.1148/radiol.2018180946.
[13]
LUO T, XU K, ZHANG Z, et al. Radiomic features from computed tomography to differentiate invasive pulmonary adenocarcinomas from non-invasive pulmonary adenocarcinomas appearing as part-solid ground-glass nodules[J]. Chung Kuo Yen Cheng Yen Chiu, 2019, 31(2): 329-338. DOI: 10.21147/j.issn.1000-9604.2019.02.07.
[14]
XU Y, LU L, LIN-NING L N, et al. Application of radiomics in predicting the malignancy of pulmonary nodules in different sizes[J]. AJR Am J Roentgenol, 2019, 213(6): 1213-1220. DOI: 10.2214/AJR.19.21490.
[15]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[16]
SALA E, MEMA E, HIMOTO Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging[J]. Clin Radiol, 2017, 72(1): 3-10. DOI: 10.1016/j.crad.2016.09.013.
[17]
WANG X H, WAN Q, CHEN H J, et al. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods[J]. Eur Radiol, 2020, 30(8): 4595-4605. DOI: 10.1007/s00330-020-06768-y.
[18]
TANG X, BAI G Y, WANG H, et al. Elaboration of multiparametric MRI-based radiomics signature for the preoperative quantitative identification of the histological grade in patients with non-small-cell lung cancer[J]. J Magn Reson Imaging, 2022, 56(2): 579-589. DOI: 10.1002/jmri.28051.
[19]
WANG X H, LI X C, CHEN H J, et al. Pulmonary MRI radiomics and machine learning: effect of intralesional heterogeneity on classification of lesion[J]. Acad Radiol, 2022, 29(Suppl 2): S73-S81. DOI: 10.1016/j.acra.2020.12.020.
[20]
MANIRUZZAMAN M, JAHANUR RAHMAN M, AHAMMED B, et al. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms[J/OL]. Comput Methods Programs Biomed, 2019, 176: 173-193 [2022-11-28]. https://pubmed.ncbi.nlm.nih.gov/31200905/. DOI: 10.1016/j.cmpb.2019.04.008.
[21]
ZHANG X, YAN L F, HU Y C, et al. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features[J]. Oncotarget, 2017, 8(29): 47816-47830. DOI: 10.18632/oncotarget.18001.
[22]
HAMERLA G, MEYER H J, SCHOB S, et al. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: a multicenter radiomics study[J/OL]. Magn Reson Imaging, 2019, 63: 244-249 [2022-11-28]. https://pubmed.ncbi.nlm.nih.gov/31425811/. DOI: 10.1016/j.mri.2019.08.011.
[23]
YIN P, MAO N, ZHAO C, et al. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features[J]. Eur Radiol, 2019, 29(4): 1841-1847. DOI: 10.1007/s00330-018-5730-6.
[24]
FENG B, ZHANG M H, ZHU H L, et al. MRI image segmentation model with support vector machine algorithm in diagnosis of solitary pulmonary nodule[J/OL]. Contrast Media Mol Imaging, 2021, 2021: 9668836 [2022-11-28]. https://pubmed.ncbi.nlm.nih.gov/34377105/. DOI: 10.1155/2021/9668836.
[25]
ZHANG Y Q, CHENG C, LIU Z B, et al. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in 18F-FDG PET/CT[J]. Med Phys, 2019, 46(10): 4520-4530. DOI: 10.1002/mp.13733.
[26]
YANG F, FAN J, TIAN Z, et al. Population-based research of pulmonary subsolid nodule CT screening and artificial intelligence application[J]. Chin J Thorac Cardiovasc Surg, 2020, 36(3): 145-150. DOI: 10.3760/cma.j.cn112434-20191126-00420
[27]
HATABU H, OHNO Y, GEFTER W B, et al. Expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: fleischner society position paper[J]. Radiology, 2020, 297(2): 286-301. DOI: 10.1148/radiol.2020201138.
[28]
YU N, DUAN H F, YANG C B, et al. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo (r-VIBE) sequence for assessment of pulmonary lesions: a prospective comparison of CT and MRI[J/OL]. Cancer Imaging, 2021, 21(1): 68 [2022-11-28]. https://pubmed.ncbi.nlm.nih.gov/34930463/. DOI: 10.1186/s40644-021-00441-3.
[29]
FANG T, MENG N, FENG P Y, et al. A comparative study of amide proton transfer weighted imaging and intravoxel incoherent motion MRI techniques versus (18) F-FDG PET to distinguish solitary pulmonary lesions and their subtypes[J]. J Magn Reson Imaging, 2022, 55(5): 1376-1390. DOI: 10.1002/jmri.27977.
[30]
HUANG Y S, NIISATO E, SU M M, et al. Detecting small pulmonary nodules with spiral ultrashort echo time sequences in 1.5 T MRI[J]. MAGMA, 2021, 34(3): 399-409. DOI: 10.1007/s10334-020-00885-x.
[31]
YANG S Y, WANG Y D, SHI Y X, et al. Radiomics nomogram analysis of T2-fBLADE-TSE in pulmonary nodules evaluation[J/OL]. Magn Reson Imaging, 2022, 85: 80-86 [2022-11-28]. https://pubmed.ncbi.nlm.nih.gov/34666158/. DOI: 10.1016/j.mri.2021.10.010.
[32]
JIANG J Q, YIN J B, CUI L, et al. Lung cancer: short-term reproducibility of intravoxel incoherent motion parameters and apparent diffusion coefficient at 3T[J]. J Magn Reson Imaging, 2018, 47(4): 1003-1012. DOI: 10.1002/jmri.25820.
[33]
VAN GRIETHUYSEN J J M, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J/OL]. Cancer Res, 2017, 77(21): e104-e107 [2022-11-20]. https://aacrjournals.org/cancerres/article-split/77/21/e104/662617. DOI: 10.1158/0008-5472.CAN-17-0339.
[34]
JIANG J Q, CUI L, XIAO Y, et al. B1-CorrectedT1 mapping in lung cancer: repeatability, reproducibility, and identification of histological types[J]. Magnetic Resonance Imaging, 2021, 54(5): 1529-1540. DOI: 10.1002/jmri.27844.
[35]
YANG S Y, SHAN F, YAN Q Q, et al. A pilot study of native T1-mapping for focal pulmonary lesions in 3.0 T magnetic resonance imaging: size estimation and differential diagnosis[J]. J Thorac Dis, 2020, 12(5): 2517-2528. DOI: 10.21037/jtd.2020.03.42.
[36]
LI G Z, HUANG R J, ZHU M, et al. Native T1-mapping and diffusion-weighted imaging (DWI) can be used to identify lung cancer pathological types and their correlation with Ki-67 expression[J]. J Thorac Dis, 2022, 14(2): 443-454. DOI: 10.21037/jtd-22-77.
[37]
YAN Q Q, YI Y Q, SHEN J, et al. Preliminary study of 3 T-MRI native T1-mapping radiomics in differential diagnosis of non-calcified solid pulmonary nodules/masses[J/OL]. Cancer Cell Int, 2021, 21(1): 539 [2022-11-20]. https://pubmed.ncbi.nlm.nih.gov/34663307/. DOI: 10.1186/s12935-021-02195-1.
[38]
ZHU X Z, DONG D, CHEN Z D, et al. Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer[J]. Eur Radiol, 2018, 28(7): 2772-2778. DOI: 10.1007/s00330-017-5221-1.
[39]
BASHIR U, KAWA B, SIDDIQUE M, et al. Non-invasive classification of non-small cell lung cancer: a comparison between random forest models utilising radiomic and semantic features[J/OL]. Br J Radiol, 2019, 92(1099): 20190159 [2022-11-20]. https://pubmed.ncbi.nlm.nih.gov/31166787/. DOI: 10.1259/bjr.20190159.
[40]
LIU L P, ZHANG X X, CUI L B, et al. Preliminary comparison of diffusion-weighted MRI and PET/CT in predicting histological type and malignancy of lung cancer[J]. Clin Respir J, 2017, 11(2): 151-158. DOI: 10.1111/crj.12316.
[41]
XU X P, WANG H J, DU P, et al. A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors[J]. J Magn Reson Imaging, 2019, 50(6): 1893-1904. DOI: 10.1002/jmri.26749.
[42]
XU X P, ZHANG X, TIAN Q, et al. Quantitative identification of nonmuscle-invasive and muscle-invasive bladder carcinomas: a multiparametric MRI radiomics analysis[J]. J Magn Reson Imaging, 2019, 49(5): 1489-1498. DOI: 10.1002/jmri.26327.
[43]
TANG X, XU X P, HAN Z P, et al. Elaboration of a multimodal MRI-based radiomics signature for the preoperative prediction of the histological subtype in patients with non-small-cell lung cancer[J/OL]. BioMed Eng OnLine, 2020, 19(1): 5 [2022-11-20]. https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-019-0744-0. DOI: 10.1186/s12938-019-0744-0.
[44]
SUN Z F, AUBRY M C, DESCHAMPS C, et al. Histologic grade is an independent prognostic factor for survival in non-small cell lung cancer: an analysis of 5018 hospital- and 712 population-based cases[J]. J Thorac Cardiovasc Surg, 2006, 131(5): 1014-1020. DOI: 10.1016/j.jtcvs.2005.12.057.
[45]
ARDILA D, KIRALY A P, BHARADWAJ S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[J]. Nat Med, 2019, 25(6): 954-961. DOI: 10.1038/s41591-019-0447-x.
[46]
CHEN X, FANG M J, DONG D, et al. A radiomics signature in preoperative predicting degree of tumor differentiation in patients with non-small cell lung cancer[J]. Acad Radiol, 2018, 25(12): 1548-1555. DOI: 10.1016/j.acra.2018.02.019.
[47]
ABDALLAH S M B, HIRSH V. Irreversible tyrosine kinase inhibition of epidermal growth factor receptor with afatinib in egfr activating mutation-positive advanced non-small-cell lung cancer[J]. Curr Oncol, 2018, 25(11): 9-17. DOI: 10.3747/co.25.3732.
[48]
YUAN M, PU X H, XU X Q, et al. Lung adenocarcinoma: assessment of epidermal growth factor receptor mutation status based on extended models of diffusion-weighted image[J]. J Magn Reson Imaging, 2017, 46(1): 281-289. DOI: 10.1002/jmri.25572.
[49]
WANG Y Z, WAN Q, XIA X Y, et al. Value of radiomics model based on multi-parametric magnetic resonance imaging in predicting epidermal growth factor receptor mutation status in patients with lung adenocarcinoma[J]. J Thorac Dis, 2021, 13(6): 3497-3508. DOI: 10.21037/jtd-20-3358.

PREV Research progress in evaluating microvascular metastases patterns of hepatocellular carcinoma by Gd-EOB-DTPA enhanced MRI
NEXT Application progress of MRI radiomics in breast cancer of neoadjuvant chemotherapy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn