Share:
Share this content in WeChat
X
Reviews
Research progress and applications of fat quantification with magnetic resonance imaging
MA Mengyuan  WANG Jinyang  LI Xiaoben  FAN Zhuangzhuang  WANG Changqing 

Cite this article as: MA M Y, WANG J Y, LI X B, et al. Research progress and applications of fat quantification with magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(7): 197-202. DOI:10.12015/issn.1674-8034.2023.07.036.


[Abstract] Due to unhealthy diet and lack of exercise, abnormal fat content in the human body has gradually become one of the important factors that endanger human health. Excessive fat accumulation around tissues and organs can destroy the information transmission system in the human body, and make tissues and organs transmit error signal to the body, leading to endocrine system function disturbances. Abnormal fat deposition is closely related to several chronic diseases, such as fatty liver, type 2 diabetes, hypertension and osteoporosis. Therefore, the accurate quantification of fat is of great clinical significance for the prevention, assessment, diagnosis and treatment of these diseases. The gold standard for accurate quantification of fat is biopsy, but it has certain invasive and sampling errors. In recent years, the research on fat quantification by magnetic resonance technology is deepening. We reviewed several magnetic resonance techniques, including magnetic resonance spectroscopy, adipose-inhibition imaging, water-fat separation techniques and proton density fat fraction, for fat quantification in different parts of human body (liver, pancreas, vertebral bone marrow and muscle) in this paper. This review aimed to provide an accurate biomarker for fat quantification, which would be helpful for accurate diagnosis and treatment in clinic.
[Keywords] magnetic resonance imaging;fat deposition;fat quantification;liver;pancreas;pyramidal bone marrow;muscle

MA Mengyuan   WANG Jinyang   LI Xiaoben   FAN Zhuangzhuang   WANG Changqing*  

School of Biomedical Engineering, Anhui Medical University, Hefei 230012, China

Corresponding author: Wang CQ, E-mail: wangchangqing@ahmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 62001005); Anhui Provincial Natural Science Foundation (No. 2008085QH425); Grants for Scientific Research of BSKY from Anhui Medical University (No. XJ201811).
Received  2022-08-25
Accepted  2023-05-30
DOI: 10.12015/issn.1674-8034.2023.07.036
Cite this article as: MA M Y, WANG J Y, LI X B, et al. Research progress and applications of fat quantification with magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(7): 197-202. DOI:10.12015/issn.1674-8034.2023.07.036.

[1]
LIU B X, SUN W, KONG X Q. Perirenal fat: a unique fat pad and potential target for cardiovascular disease[J]. Angiology, 2019, 70(7): 584-593. DOI: 10.1177/0003319718799967.
[2]
WAGNER D R, TERAMOTO M, JUDD T, et al. Comparison of A-mode and B-mode ultrasound for measurement of subcutaneous fat[J]. Ultrasound Med Biol, 2020, 46(4): 944-951. DOI: 10.1016/j.ultrasmedbio.2019.11.018.
[3]
XU J J, BOESEN M R, HANSEN S L, et al. Assessment of liver fat: dual-energy CT versus conventional CT with and without contrast[J/OL]. Diagnostics (Basel), 2022, 12(3): 708 [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/35328261. DOI: 10.3390/diagnostics12030708.
[4]
PASANTA D, HTUN K T, PAN J, et al. Magnetic resonance spectroscopy of hepatic fat from fundamental to clinical applications[J/OL]. Diagnostics (Basel), 2021, 11(5): 842 [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/34067193. DOI: 10.3390/diagnostics11050842.
[5]
MENG X Y, LI Z Y, LI H. Magnetic resonance imaging in evaluating fat content quantitatively: a review[J]. J China Clin Med Imaging, 2018, 29(5): 362-365. DOI: 10.3969/j.issn.1672-3511.2017.04.029
[6]
LONGO R, POLLESELLO P, RICCI C, et al. Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis[J]. J Magn Reson Imaging, 1995, 5(3): 281-285. DOI: 10.1002/jmri.1880050311.
[7]
BAESHEN A, WYSS P O, HENNING, et al. Test-retest reliability of the brain metabolites GABA and glx with JPRESS, PRESS, and MEGA-PRESS MRS sequences in vivo at 3T[J]. J Magn Reson Imaging, 2020, 51(4): 1181-1191. DOI: 10.1002/jmri.26921.
[8]
RUSCHKE S, KARAMPINOS D C. Single-voxel short-tr multi-ti multi-te steam mrs for water-fat relaxometry[J]. Magn Reson Med, 2022, 87(6): 2587-2599. DOI: 10.1002/mrm.29157.
[9]
STAREKOVA J, HERNANDO D, PICKHARDT P J, et al. Quantification of liver fat content with CT and MRI: state of the art[J]. Radiology, 2021, 301(2): 250-262. DOI: 10.1148/radiol.2021204288.
[10]
KISHIDA Y, KOYAMA H, SEKI S, et al. Comparison of fat suppression capability for chest MR imaging with Dixon, SPAIR and STIR techniques at 3 Tesla MR system[J]. Magn Reson Imaging, 2018, 47: 89-96. DOI: 10.1016/j.mri.2017.11.012.
[11]
BASTIAANSEN J A M, STUBER M. Flexible water excitation for fat-free MRI at 3T using lipid insensitive binomial off-resonant RF excitation (LIBRE) pulses[J]. Magn Reson Med, 2018, 79(6): 3007-3017. DOI: 10.1002/mrm.26965.
[12]
GUO D, YANG C. Fatty liver on magnetic resonance imaging: current status[J]. Med J West China, 2017, 29(4): 574-577, 581. DOI: 10.3969/j.issn.1672-3511.2017.04.029
[13]
COTLER S J, GUZMAN G, LAYDEN-ALMER J, et al. Measurement of liver fat content using selective saturation at 3.0 T[J]. J Magn Reson Imaging, 2007, 25(4): 743-748. DOI: 10.1002/jmri.20865.
[14]
MARTÍN J, SENTIS M, PUIG J, et al. Comparison of in-phase and opposed-phase GRE and conventional SE MR pulse sequences in T1-weighted imaging of liver lesions[J]. J Comput Assist Tomogr, 1996, 20(6): 890-897. DOI: 10.1097/00004728-199611000-00005.
[15]
STOJANOVSKA J, LUMENG C N, GRIFFIN C, et al. Water-fat magnetic resonance imaging quantifies relative proportions of brown and white adipose tissues: ex-vivo experiments[J/OL]. J Med Imaging (Bellingham), 2018, 5(2): 024007 [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/30137870. DOI: 10.1117/1.JMI.5.2.024007.
[16]
SHAO S Y, ZHAO J. Current status and progression of MRI quantitative research in brown adipose tissue[J]. Chin J Magn Reson Imaging, 2021, 12(6): 121-124. DOI: 10.12015/issn.1674-8034.2021.06.026.
[17]
DIXON W T. Simple proton spectroscopic imaging[J]. Radiology, 1984, 153(1): 189-194. DOI: 10.1148/radiology.153.1.6089263.
[18]
GLOVER G H, SCHNEIDER E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction[J]. Magn Reson Med, 1991, 18(2): 371-383. DOI: 10.1002/mrm.1910180211.
[19]
REEDER S B, PINEDA A R, WEN Z F, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging[J]. Magn Reson Med, 2005, 54(3): 636-644. DOI: 10.1002/mrm.20624.
[20]
CHIANG I C, CHUANG W S, HANG I T, et al. Benefits and pitfalls of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) imaging in clinical application of the cervical spine MR[J/OL]. Clin Radiol, 2019, 74(1): 78.e13-78.e78.e21 [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/30314808. DOI: 10.1016/j.crad.2018.09.002.
[21]
JEON K J, LEE C N, CHOI Y J, et al. Assessment of bone marrow fat fractions in the mandibular condyle head using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) method[J/OL]. PLoS One, 2021, 16(2): e0246596 [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/33635882. DOI: 10.1371/journal.pone.0246596.
[22]
EUN S J, JUNG E Y, PARK D K, et al. Effective fat quantification using multiple region growing scheme at high-field MRI[J/OL]. IEEE Access, 2018, 7: 2118-2125 [2022-06-25]. https://ieeexplore.ieee.org/document/8543795. DOI: 10.1109/ACCESS.2018.2883300.
[23]
DYKE J P. Quantitative MRI proton density fat fraction: a coming of age[J]. Radiology, 2021, 298(3): 652-653. DOI: 10.1148/radiol.2020204356.
[24]
REEDER S B, CRUITE I, HAMILTON G, et al. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy[J]. J Magn Reson Imaging, 2011, 34(4): 729-749. DOI: 10.1002/jmri.22775.
[25]
WANG X K, COLGAN T J, HINSHAW L A, et al. T 1-corrected quantitative chemical shift-encoded MRI[J]. Magn Reson Med, 2020, 83(6): 2051-2063. DOI: 10.1002/mrm.28062.
[26]
LAWRENCE E M, ROBERTS N T, HERNANDO D, et al. Effect of noise and estimator type on bias for analysis of liver proton density fat fraction[J/OL]. Magn Reson Imaging, 2020, 74: 244-249 [2022-06-25]. https://pubmed.ncbi.nlm.nih.gov/33011211/. DOI: 10.1016/j.mri.2020.09.027.
[27]
BYDDER M, HAMILTON G, DE ROCHEFORT L, et al. Sources of systematic error in proton density fat fraction (PDFF) quantification in the liver evaluated from magnitude images with different numbers of echoes[J/OL]. NMR Biomed, 2018, 31(1): DOI: [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/29130539. DOI: 10.1002/nbm.3843.
[28]
CHEN W T, KARAMPINOS D C. Chemical-shift encoding-based water-fat separation with multifrequency fat spectrum modeling in spin-lock MRI[J]. Magn Reson Med, 2020, 83(5): 1608-1624. DOI: 10.1002/mrm.28026.
[29]
HU H H, YOKOO T, BASHIR M R, et al. Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study[J]. Radiology, 2021, 298(3): 640-651. DOI: 10.1148/radiol.2021202912.
[30]
HERNANDO D, SHARMA S D, ALIYARI GHASABEH M, et al. Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom[J]. Magn Reson Med, 2017, 77(4): 1516-1524. DOI: 10.1002/mrm.26228.
[31]
BRODY H. Fatty liver disease[J/OL]. Nature, 2017, 551(7681) [2022-06-25]. https://www.nature.com/articles/d41586-017-06927-0. DOI: 10.1038/d41586-017-06927-0.
[32]
CHALASANI N, YOUNOSSI Z, LAVINE J E, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases[J]. Hepatology, 2018, 67(1): 328-357. DOI: 10.1002/hep.29367.
[33]
YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.
[34]
MARTÍ-AGUADO D, JIMÉNEZ-PASTOR A, ALBERICH-BAYARRI Á, et al. Automated whole-liver MRI segmentation to assess steatosis and iron quantification in chronic liver disease[J]. Radiology, 2022, 302(2): 345-354. DOI: 10.1148/radiol.2021211027.
[35]
CHEN G, JIANG J P, WANG X Q, et al. Evaluation of hepatic steatosis before liver transplantation in ex vivo by volumetric quantitative PDFF-MRI[J]. Magn Reson Med, 2021, 85(5): 2805-2814. DOI: 10.1002/mrm.28592.
[36]
CAUSSY C, REEDER S B, SIRLIN C B, et al. Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH trials[J]. Hepatology, 2018, 68(2): 763-772. DOI: 10.1002/hep.29797.
[37]
PIEŃKOWSKA J, BRZESKA B, KASZUBOWSKI M, et al. MRI assessment of ectopic fat accumulation in pancreas, liver and skeletal muscle in patients with obesity, overweight and normal BMI in correlation with the presence of central obesity and metabolic syndrome[J/OL]. Diabetes Metab Syndr Obes, 2019, 12: 623-636 [2022-06-25]. https://pubmed.ncbi.nlm.nih.gov/31118724/. DOI: 10.2147/DMSO.S194690.
[38]
KIM J, ALBAKHEET S S, HAN K, et al. Quantitative MRI assessment of pancreatic steatosis using proton density fat fraction in pediatric obesity[J]. Korean J Radiol, 2021, 22(11): 1886-1893. DOI: 10.3348/kjr.2020.1343.
[39]
STEVEN S, HOLLINGSWORTH K G, AL-MRABEH A, et al. Erratum. very low-calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. diabetes care2016;39: 808-815[J/OL]. Diabetes Care, 2018, 41(6): 1321 [2022-06-25]. https://pubmed.ncbi.nlm.nih.gov/29691229/. DOI: 10.2337/dc18-er06.
[40]
CHEN Y D, LONG L L, JIANG Z J, et al. Quantification of pancreatic proton density fat fraction in diabetic pigs using MR imaging and IDEAL-IQ sequence[J/OL]. BMC Med Imaging, 2019, 19(1): 38 [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/31088378. DOI: 10.1186/s12880-019-0336-2.
[41]
ZHANG Q H, LIU A L, YANG J, et al. Correlation between pancreatic fat deposition and abdominal fat distribution and essential hypertension based on MRI[J]. Chin J Magn Reson Imaging, 2021, 12(1): 43-47, 52. DOI: 10.12015/issn.1674-8034.2021.01.009.
[42]
SAKAI N S, TAYLOR S A, CHOUHAN M D. Obesity, metabolic disease and the pancreas-Quantitative imaging of pancreatic fat[J/OL]. Br J Radiol, 2018, 91(1089): 20180267 [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/29869917. DOI: 10.1259/bjr.20180267.
[43]
HARRINGTON K A, SHUKLA-DAVE A, PAUDYAL R, et al. MRI of the pancreas[J]. J Magn Reson Imaging, 2021, 53(2): 347-359. DOI: 10.1002/jmri.27148.
[44]
WONG A K, CHANDRAKUMAR A, WHYTE R, et al. Bone marrow and muscle fat infiltration are correlated among postmenopausal women with osteoporosis: the AMBERS cohort study[J]. J Bone Miner Res, 2020, 35(3): 516-527. DOI: 10.1002/jbmr.3910.
[45]
KRUG R, JOSEPH G B, HAN M, et al. Associations between vertebral body fat fraction and intervertebral disc biochemical composition as assessed by quantitative MRI[J]. J Magn Reson Imaging, 2019, 50(4): 1219-1226. DOI: 10.1002/jmri.26675.
[46]
VAN VUCHT N, SANTIAGO R, LOTTMANN B, et al. The Dixon technique for MRI of the bone marrow[J]. Skeletal Radiol, 2019, 48(12): 1861-1874. DOI: 10.1007/s00256-019-03271-4.
[47]
KARAMPINOS D C, MELKUS G, BAUM T, et al. Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS[J]. Magn Reson Med, 2014, 71(3): 1158-1165. DOI: 10.1002/mrm.24775.
[48]
SCHMEEL F C, LUETKENS J A, WAGENHÄUSER P J, et al. Proton density fat fraction (PDFF) MRI for differentiation of benign and malignant vertebral lesions[J]. Eur Radiol, 2018, 28(6): 2397-2405. DOI: 10.1007/s00330-017-5241-x.
[49]
LATIFOLTOJAR A, HALL-CRAGGS M, BAINBRIDGE A, et al. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction[J]. Eur Radiol, 2017, 27(12): 5325-5336. DOI: 10.1007/s00330-017-4907-8.
[50]
LEE S H, YOO H J, YU S M, et al. Fat quantification in th e vertebral body: comparison of modified Dixon technique with single-voxel magnetic resonance spectroscopy[J]. Korean J Radiol, 2019, 20(1): 126-133. DOI: 10.3348/kjr.2018.0174.
[51]
MERCURI E, BÖNNEMANN C G, MUNTONI F. Muscular dystrophies[J]. Lancet, 2019, 394(10213): 2025-2038. DOI: 10.1016/S0140-6736(19)32910-1.
[52]
EDMUNDSON C, BIRD S J. Acute manifestations of neuromuscular disease[J]. Semin Neurol, 2019, 39(1): 115-124. DOI: 10.1055/s-0038-1676838.
[53]
KHAN A A, BOGGS T, BOWLING M, et al. Whole-body magnetic resonance imaging in late-onset Pompe disease: clinical utility and correlation with functional measures[J]. J Inherit Metab Dis, 2020, 43(3): 549-557. DOI: 10.1002/jimd.12190.
[54]
DAHLQVIST J R, WIDHOLM P, LEINHARD O D, et al. MRI in neuromuscular diseases: an emerging diagnostic tool and biomarker for prognosis and efficacy[J]. Ann Neurol, 2020, 88(4): 669-681. DOI: 10.1002/ana.25804.
[55]
BURAKIEWICZ J, SINCLAIR C D J, FISCHER D, et al. Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy[J]. J Neurol, 2017, 264(10): 2053-2067. DOI: 10.1007/s00415-017-8547-3.
[56]
COOLEY J R, HEBERT J J, DE ZOETE A, et al. Assessing lumbar paraspinal muscle cross-sectional area and fat composition with T1 versus T2-weighted magnetic resonance imaging: reliability and concurrent validity[J/OL]. PLoS One, 2021, 16(2): e0244633 [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/33544707. DOI: 10.1371/journal.pone.0244633.
[57]
MERCURI E, TALIM B, MOGHADASZADEH B, et al. Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p (RSMD1)[J]. Neuromuscul Disord, 2002, 12(7/8): 631-638. DOI: 10.1016/s0960-8966(02)00023-8.
[58]
SCHLAEGER S, SOLLMANN N, ZOFFL A, et al. Quantitative muscle MRI in patients with neuromuscular diseases-association of muscle proton density fat fraction with semi-quantitative grading of fatty infiltration and muscle strength at the thigh region[J/OL]. Diagnostics (Basel), 2021, 11(6): 1056 [2022-06-25]. https://www.ncbi.nlm.nih.gov/pubmed/34201303. DOI: 10.3390/diagnostics11061056.
[59]
MARTY B, REYNGOUDT H, BOISSERIE J M, et al. Water-fat separation in MR fingerprinting for quantitative monitoring of the skeletal muscle in neuromuscular disorders[J]. Radiology, 2021, 300(3): 652-660. DOI: 10.1148/radiol.2021204028.
[60]
JANSSEN B, VOET N, GEURTS A, et al. Quantitative MRI reveals decelerated fatty infiltration in muscles of active FSHD patients[J]. Neurology, 2016, 86(18): 1700-1707. DOI: 10.1212/wnl.0000000000002640.

PREV Progressions in clinical application of magnetic resonance imaging in myopathy
NEXT Prediction of the risk of recurrent ischemic stroke based on intracranial plaque radiomics with traditional biomarkers
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn