Share:
Share this content in WeChat
X
Clinical Article
Prediction of the risk of recurrent ischemic stroke based on intracranial plaque radiomics with traditional biomarkers
WANG Yue  HOU Xiaowen  CHEN Huisheng  TAO Lin 

WANG Y, HOU X W, CHEN H S, et al. Prediction of the risk of recurrent ischemic stroke based on intracranial plaque radiomics with traditional biomarkers[J]. Chin J Magn Reson Imaging, 2023, 14(8): 1-9. DOI:10.12015/issn.1674-8034.2023.08.001.


[Abstract] Objective To develop Cox proportional hazards regression model for prediction of the recurrence risk of non-cardiogenic anterior circulation ischemic stroke during 2-year follow-up based on radiomic approach by extracting texture features from a symptomatic middle cerebral artery (MCA) plaque, and to further evaluate the developed model performance.Materials and Methods In our retrospective study from January 2019 to January 2020, a total of 82 eligible patients with first-ever ischemic stroke and middle cerebral artery >50% luminal stenosis underwent baseline intracranial high-resolution magnetic resonance imaging (HRMRI) followed up for 2 year when recurrent non-cardiogenic ischemic stroke in the territory of MCA served as an endpoint event were finally enrolled in current analyses. HRMRI-based radiomic features were manually extracted from an index MCA plaque using 3D-Slicer software package. Multivariable Cox regression analysis was used to develop the predicting model where multi-dimensional parameters were selected by LASSO (least absolute shrinkage and selection operator) regression analysis, for which the performance was further assessed with respect to its calibration, discrimination.Results Of which, 19 cases with endpoint events occurred during the 2-year follow-up period with 13.9 per 100 person-years of the recurrence rate of ischemic stroke. Multivariable Cox regression included top 4 parameters with nonzero coefficients defined by logλmin of LASSO regression (i.e., second-order texture feature, plaque hemorrhage, entropy and low density lipoprotein cholesterol). In the prediction model adjusting for baseline covariants, the gray level co-occurrence matrix was found to be the major contributor to the event endpoint [adjusted hazard ratio (aHR): 5.379, 95% confidence interval (CI): 1.716-16.859, P=0.004, weight=40.23%]. However, plaque hemorrhage (aHR: 2.226, 95% CI: 0.821-6.040, P=0.116, weight=20.86%), entropy (aHR: 1.324, 95% CI: 0.769-2.278, P=0.311, weight=16.13%) and low density lipoprotein cholesterol (aHR: 1.485, 95% CI: 0.877-2.516, P=0.142, weight=22.78%) just showed a trend towards significance. Additionally, the developed prediction model showed a good discrimination with a C-index of 0.8296 and good calibration.Conclusions The findings suggest that our developed prediction model can target a potential sub-population at high risk of recurrent ischemic stroke in which gray level co-occurrence matrix may account for the major contributing, although this must be confirmed in future.
[Keywords] ischemic stroke;atherosclerosis;intracranial stenosis plaques;radiomics;magnetic resonance imaging

WANG Yue1   HOU Xiaowen2   CHEN Huisheng1   TAO Lin3*  

1 Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110000, China

2 School of Public Health, Shenyang Medical College, Shenyang 110034, China

3 Shuren International School, Shenyang Medical College, Shenyang 110034, China

Corresponding author: Tao L, E-mail: 1939908868@qq.com

Conflicts of interest   None.

Received  2022-10-19
Accepted  2023-07-21
DOI: 10.12015/issn.1674-8034.2023.08.001
WANG Y, HOU X W, CHEN H S, et al. Prediction of the risk of recurrent ischemic stroke based on intracranial plaque radiomics with traditional biomarkers[J]. Chin J Magn Reson Imaging, 2023, 14(8): 1-9. DOI:10.12015/issn.1674-8034.2023.08.001.

[1]
GUTIERREZ J, TURAN T N, HOH B L, et al. Intracranial atherosclerotic stenosis: risk factors, diagnosis, and treatment[J]. Lancet Neurol, 2022, 21(4): 355-368. DOI: 10.1016/S1474-4422(21)00376-8.
[2]
TAO L, LI X Q, HOU X W, et al. Intracranial atherosclerotic plaque as a potential cause of embolic stroke of undetermined source[J]. J Am Coll Cardiol, 2021, 77(6): 680-691. DOI: 10.1016/j.jacc.2020.12.015.
[3]
TAO L, DAI Y J, SHANG Z Y, et al. Atrial cardiopathy and non-stenotic intracranial complicated atherosclerotic plaque in patients with embolic stroke of undetermined source[J]. J Neurol Neurosurg Psychiatry, 2022, 93(4): 351-359. DOI: 10.1136/jnnp-2021-327517.
[4]
SHANG Z Y, TAO L, LI X Q, et al. The characteristics of intracranial plaques of unilateral, anterior circulation embolic stroke of undetermined source: an analysis of different subtypes based on high-resolution imaging[J]. Eur J Neurol, 2022, 29(9): 2654-2663. DOI: 10.1111/ene.15409.
[5]
LEE H S, JUNG J M, YANG H B, et al. Predicting Stenosis aggravation in follow-up high-resolution magnetic resonance images of patients with intracranial atherosclerosis[J]. Cerebrovasc Dis, 2022, 51(5): 608-614. DOI: 10.1159/000523725.
[6]
LI S, SONG X Y, HU Q M, et al. Association of plaque features with infarct patterns in patients with acutely symptomatic middle cerebral artery atherosclerotic disease[J/OL]. J Stroke Cerebrovasc Dis, 2021, 30(5): 105724 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/33714918/. DOI: 10.1016/j.jstrokecerebrovasdis.2021.105724.
[7]
LI L, TANG M, YAN X J, et al. Plaque characteristics in young adults with symptomatic intracranial atherosclerotic Stenosis: a preliminary study[J/OL]. Front Neurol, 2022, 13: 825503 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/35222253/. DOI: 10.3389/fneur.2022.825503.
[8]
LIU S, TANG R W, XIE W W, et al. Plaque characteristics and hemodynamics contribute to neurological impairment in patients with ischemic stroke and transient ischemic attack[J]. Eur Radiol, 2021, 31(4): 2062-2072. DOI: 10.1007/s00330-020-07327-1.
[9]
SZYCHOT E, YOUSSEF A, GANESHAN B, et al. Predicting outcome in childhood diffuse midline gliomas using magnetic resonance imaging based texture analysis[J]. J De Neuroradiol, 2021, 48(4): 243-247. DOI: 10.1016/j.neurad.2020.02.005.
[10]
KUNIMATSU A, YASAKA K, AKAI H, et al. Texture analysis in brain tumor MR imaging[J]. Magn Reson Med Sci, 2022, 21(1): 95-109. DOI: 10.2463/mrms.rev.2020-0159.
[11]
KUNCAN F, KAYA Y, TEKIN R, et al. A new approach for physical human activity recognition based on co-occurrence matrices[J]. J Supercomput, 2022, 78(1): 1048-1070. DOI: 10.1007/s11227-021-03921-2.
[12]
QIU L, ZHANG X P, MAO H X, et al. Comparison of comprehensive morphological and radiomics features of subsolid pulmonary nodules to distinguish minimally invasive adenocarcinomas and invasive adenocarcinomas in CT scan[J/OL]. Front Oncol, 2021, 11: 691112 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/35059308/. DOI: 10.3389/fonc.2021.691112.
[13]
ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
[14]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[15]
SHEN Q J, SHAN Y N, HU Z Y, et al. Quantitative parameters of CT texture analysis as potential markersfor early prediction of spontaneous intracranial hemorrhage enlargement[J]. Eur Radiol, 2018, 28(10): 4389-4396. DOI: 10.1007/s00330-018-5364-8.
[16]
LI H, XIE Y L, LIU H, et al. Non-contrast CT-based radiomics score for predicting hematoma enlargement in spontaneous intracerebral hemorrhage[J]. Clin Neuroradiol, 2022, 32(2): 517-528. DOI: 10.1007/s00062-021-01062-w.
[17]
DUAN C F, LIU F, GAO S, et al. Comparison of radiomic models based on different machine learning methods for predicting intracerebral hemorrhage expansion[J]. Clin Neuroradiol, 2022, 32(1): 215-223. DOI: 10.1007/s00062-021-01040-2.
[18]
ZURITA M, MONTALBA C, LABBÉ T, et al. Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data[J/OL]. Neuroimage Clin, 2018, 20: 724-730 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/30238916/. DOI: 10.1016/j.nicl.2018.09.002.
[19]
HOSSEINPOUR Z, JONKMAN L, OLADOSU O, et al. Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis[J/OL]. J Neurosci Methods, 2022, 379: 109671 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/35820450/. DOI: 10.1016/j.jneumeth.2022.109671.
[20]
SØRENSEN L, IGEL C, HANSEN N L, et al. Early detection of Alzheimer's disease using MRI hippocampal texture[J]. Hum Brain Mapp, 2016, 37(3): 1148-1161. DOI: 10.1002/hbm.23091.
[21]
ZHOU K, LIU Z, HE W G, et al. Application of 3D whole-brain texture analysis and the feature selection method based on within-class scatter in the classification and diagnosis of Alzheimer's disease[J]. Ther Innov Regul Sci, 2022, 56(4): 561-571. DOI: 10.1007/s43441-021-00373-x.
[22]
YU Y N, LIU M W, VILLABLANCA J P, et al. Middle cerebral artery plaque hyperintensity on T2-weighted vessel wall imaging is associated with ischemic stroke[J]. AJNR Am J Neuroradiol, 2019, 40(11): 1886-1892. DOI: 10.3174/ajnr.A6260.
[23]
SHI Z, LI J, ZHAO M, et al. Quantitative histogram analysis on intracranial atherosclerotic plaques: a high-resolution magnetic resonance imaging study[J]. Stroke, 2020, 51(7): 2161-2169. DOI: 10.1161/STROKEAHA.120.029062.
[24]
SHI Z, ZHU C C, DEGNAN A J, et al. Identification of high-risk plaque features in intracranial atherosclerosis: initial experience using a radiomic approach[J]. Eur Radiol, 2018, 28(9): 3912-3921. DOI: 10.1007/s00330-018-5395-1.
[25]
LI X N, YIN W H, SUN Y, et al. Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis[J]. Eur Radiol, 2022, 32(6): 4003-4013. DOI: 10.1007/s00330-021-08518-0.
[26]
CHEN Q, PAN T, WANG Y N, et al. A coronary CT angiography radiomics model to identify vulnerable plaque and predict cardiovascular events[J/OL]. Radiology, 2023, 307(2): e221693 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/36786701/. DOI: 10.1148/radiol.221693.
[27]
TAO L, WANG Y H, SHANG Z Y, et al. Vulnerable plaque of the petrous internal carotid artery in embolic stroke of undetermined source[J]. Eur J Neurol, 2023, 30(3): 648-658. DOI: 10.1111/ene.15655.
[28]
UEDA K, SHIRAYA T, ARAKI F, et al. Changes in entropy on polarized-sensitive optical coherence tomography images after therapeutic subthreshold micropulse laser for diabetic macular edema: a pilot study[J/OL]. PLoS One, 2021, 16(9): e0257000 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/34516553/. DOI: 10.1371/journal.pone.0257000.
[29]
LAU Z J, PHAM T, ANNABEL CHEN S H A, et al. Brain entropy, fractal dimensions and predictability: a review of complexity measures for EEG in healthy and neuropsychiatric populations[J]. Eur J Neurosci, 2022, 56(7): 5047-5069. DOI: 10.1111/ejn.15800.
[30]
MAKOWSKI D, TE A S, PHAM T, et al. The structure of chaos: an empirical comparison of fractal physiology complexity indices using NeuroKit2[J/OL]. Entropy, 2022, 24(8): 1036 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/36010700/. DOI: 10.3390/e24081036.
[31]
FENG Q, DING Z X. MRI radiomics classification and prediction in Alzheimer's disease and mild cognitive impairment: a review[J]. Curr Alzheimer Res, 2020, 17(3): 297-309. DOI: 10.2174/1567205017666200303105016.
[32]
KURAKIN A, BREDESEN D E. Alzheimer's disease as a systems network disorder: chronic stress/dyshomeostasis, innate immunity, and genetics[J]. Aging, 2020, 12(18): 17815-17844. DOI: 10.18632/aging.103883.
[33]
VERGALLO R, CREA F. Atherosclerotic plaque healing[J]. N Engl J Med, 2020, 383(9): 846-857. DOI: 10.1056/NEJMra2000317.
[34]
HSU J J, TINTUT Y, DEMER L L. Lipids and cardiovascular calcification: contributions to plaque vulnerability[J]. Curr Opin Lipidol, 2021, 32(5): 308-314. DOI: 10.1097/MOL.0000000000000777.
[35]
THANGARAJOO R G, REAZ M B I, SRIVASTAVA G, et al. Machine learning-based epileptic seizure detection methods using wavelet and EMD-based decomposition techniques: a review[J/OL]. Sensors, 2021, 21(24): 8485 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/34960577/. DOI: 10.3390/s21248485.
[36]
NIES K P H, SMITS L J M, KASSEM M, et al. Emerging role of carotid MRI for personalized ischemic stroke risk prediction in patients with carotid artery Stenosis[J/OL]. Front Neurol, 2021, 12: 718438 [2022-10-18]. https://pubmed.ncbi.nlm.nih.gov/34413828/. DOI: 10.3389/fneur.2021.718438.
[37]
ALKHALIL M, CHOUDHURY R P. Intraplaque hemorrhage as a marker of stroke risk[J]. JACC Cardiovasc Imaging, 2020, 13(2Pt 1): 407-409. DOI: 10.1016/j.jcmg.2019.05.004.
[38]
BAPST B, AMEGNIZIN J L, VIGNAUD A, et al. Post-contrast 3D T1-weighted TSE MR sequences (SPACE, CUBE, VISTA/BRAINVIEW, isoFSE, 3D MVOX): Technical aspects and clinical applications[J]. J De Neuroradiol, 2020, 47(5): 358-368. DOI: 10.1016/j.neurad.2020.01.085.

PREV Research progress and applications of fat quantification with magnetic resonance imaging
NEXT Application of quantitative magnetic resonance diffusion white matter analysis in the observation of white matter changes in low-grade glioma-associated epilepsy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn