Share:
Share this content in WeChat
X
Clinical Article
Predicting IDH1 gene mutation of gliomas by combining clinical and imaging features with multiple sequence radiomics
HE Jinlong  GAO Yang  WU Qiong  LI Bo  WANG Peng 

HE J L, GAO Y, WU Q, et al. Predicting IDH1 gene mutation of gliomas by combining clinical and imaging features with multiple sequence radiomics[J]. Chin J Magn Reson Imaging, 2023, 14(8): 27-33, 134. DOI:10.12015/issn.1674-8034.2023.08.004.


[Abstract] Objective To explore the value of multi-sequence radiomics features and clinical related parameters in predicting isocitrate dehydrogenase 1 (IDH1) gene mutations in gliomas.Materials andMethods A total of 81 patients with gliomas confirmed by histopathology and containing IDH1 gene mutation status information were analyzed retrospectively. Five types of images of T2WI, T1WI, diffusion weighted imaging (DWI), apparent diffusion coefficient (ADC), and contrast enhancement MRI (CE-MRI) were applied for radiomics feature extraction. Each sequence can extract 107 radiomics features. The above features were subjected to single factor rank sum test, correlation analysis, and least absolute shrinkage selection operator (LASSO) dimensionality reduction screening. Multivariate logistic regression was used to establish various sequence models and multiple sequence fusion models for the remaining features, including T2WI model, T1WI model, DWI model, ADC model, CE-MRI model, and multiple sequence radiomics model. Finally, a combined model is established by combining the Radscores output from the multi sequence radiomics model with the clinical multivariate model. The above models used receiver operating characteristic (ROC) curves to analyze the predictive performance of each model, and compared the differences in area under the curve (AUC) using DeLong non parametric tests. In addition, decision curve analysis (DCA) was used to evaluate the clinical benefits of multiple sequence radiomics models and combined models in identifying IDH1 gene mutation status.Results The combined model showed the best performance in predicting IDH1 gene mutations in gliomas (AUC: 0.928). The AUC values of multiple sequence radiomics models were higher than those of T2WI, DWI, and ADC models (0.865 vs. 0.752, 0.656, 0.631, P<0.05, respectively); The AUC value of the combined model was higher than that of T2WI, T1WI, T1 enhanced, and multi sequence radiomics models (0.928 vs. 0.752, 0.827, 0.829, 0.865, P<0.05, respectively); However, there was no statistically significant difference in AUC values between the combined model and the clinical model (0.928 and 0.880, respectively, P>0.05). The decision curve analysis showed that the combined model had higher clinical benefits in identifying IDH1 gene mutations with sequence radiomics models.Conclusions The combination of multi-sequence radiomics features, clinical and MRI imaging features has important value in preoperative differentiation of IDH1 gene mutations in gliomas.
[Keywords] glioma of the brain;isocitrate dehydrogenase 1 gene mutation;radiomics;model prediction;magnetic resonance imaging

HE Jinlong   GAO Yang*   WU Qiong   LI Bo   WANG Peng  

Department of Imaging Diagnosis, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, China

Corresponding author: Gao Y, E-mail: 1390903990@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Project of Science and Technology Department of Inner Mongolia (No. 2019GG047); Surface Project of Inner Mongolia Medical University (No. YKD2022MS039).
Received  2022-05-09
Accepted  2023-07-21
DOI: 10.12015/issn.1674-8034.2023.08.004
HE J L, GAO Y, WU Q, et al. Predicting IDH1 gene mutation of gliomas by combining clinical and imaging features with multiple sequence radiomics[J]. Chin J Magn Reson Imaging, 2023, 14(8): 27-33, 134. DOI:10.12015/issn.1674-8034.2023.08.004.

[1]
OSTROM Q T, GITTLEMAN H, TRUITT G, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015[J/OL]. Neuro Oncol, 2018, 20(suppl_4): iv1-iv86 [2022-05-08]. https://academic.oup.com/neuro-oncology/article/20/suppl_4/iv1/5090960. DOI: 10.1093/neuonc/noy131.
[2]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[3]
YAN H, PARSONS D W, JIN G L, et al. IDH1 and IDH2 mutations in gliomas[J]. N Engl J Med, 2009, 360(8): 765-773. DOI: 10.1056/NEJMoa0808710.
[4]
HUANG L E, COHEN A L, COLMAN H, et al. IGFBP2 expression predicts IDH-mutant glioma patient survival[J]. Oncotarget, 2017, 8(1): 191-202. DOI: 10.18632/oncotarget.13329.
[5]
HOUILLIER C, WANG X, KALOSHI G, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas[J]. Neurology, 2010, 75(17): 1560-1566. DOI: 10.1212/WNL.0b013e3181f96282.
[6]
LI S C, CHOU A P, CHEN W D, et al. Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation[J]. Neuro Oncol, 2013, 15(1): 57-68. DOI: 10.1093/neuonc/nos261.
[7]
WELLER M, VAN DEN BENT M, PREUSSER M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood[J]. Nat Rev Clin Oncol, 2021, 18(3): 170-186. DOI: 10.1038/s41571-020-00447-z.
[8]
FENG Y N, LEI Y, LIN F, et al. Imaging features of glioma of the brain with different isocitrate dehydrogenase classification evaluated on magnetic resonance imaging[J]. J Basic Clin Oncol, 2019, 32(3): 226-229. DOI: 10.3969/j.issn.1673-5412.2019.03.013.
[9]
ZHANG H K, CHEN C L, SHI D P, et al. Predictive value of MRI VASARI features in brain glioma grading[J]. J Chin Pract Diagn Ther, 2019, 33(9): 907-910. DOI: 10.13507/j.issn.1674-3474.2019.09.019.
[10]
SUN C, FAN L Y, WANG W Q, et al. Radiomics and qualitative features from multiparametric MRI predict molecular subtypes in patients with lower-grade glioma[J/OL]. Front Oncol, 2021, 11: 756828 [2022-5-08]. https://pubmed.ncbi.nlm.nih.gov/35127472/. DOI: 10.3389/fonc.2021.756828.
[11]
ZHAO Z Y, ZHANG J, CAO Y T, et al. Prediction of radiomics model for IDH genotype in lower grade gliomas based on T1-weighted contrast-enhanced MRI[J]. Chin J Clin Neurosurg, 2023, 28(3): 145-149. DOI: 10.13798/j.issn.1009-153X.2023.03.001.
[12]
LIU X W, KE X A, ZHOU Q, et al. The value of apparent diffusion coefficient value in evaluating the IDH-1 mutation status and tumor cell proliferation activity of lower-grade gliomas[J]. Chin J Magn Reson Imag, 2022, 13(8): 13-18. DOI: 10.12015/issn.1674-8034.2022.08.003.
[13]
TANG W, DUAN J Y, YU Z Y, et al. Value of enhanced MRI radiomics in predicting IDH-1 genotype in gliomas[J]. Chin J Magn Reson Imag, 2022, 13(5): 111-114. DOI: 10.12015/issn.1674-8034.2022.05.020.
[14]
YIN D, CHEN G D, SHENG Y R, et al. Radiomics of conventional MRI combined with DKI to predict glioma grading[J]. Chin Imag J Integr Tradit West Med, 2022, 20(2: 117-121, 136. DOI: 10.3969/j.issn.1672-0512.2022.02.004.
[15]
CHEN R H, TAN Y. Research advances of radiomics in prognosis prediction of lower-grade gliomas[J]. Chin J Magn Reson Imag, 2023, 14(3: 159-164. DOI: 10.12015/issn.1674-8034.2023.03.029.
[16]
WEI J W, YANG G Q, HAO X H, et al. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication[J]. Eur Radiol, 2019, 29(2: 877-888. DOI: 10.1007/s00330-018-5575-z.
[17]
VAN GRIETHUYSEN J J M, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J/OL]. Cancer Res, 2017, 77(21: e104-e107 [2022-05-08]. https://pubmed.ncbi.nlm.nih.gov/29092951/. DOI: 10.1158/0008-5472.CAN-17-0339.
[18]
SHIRADKAR R, GHOSE S, JAMBOR I, et al. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: preliminary findings[J]. J Magn Reson Imaging, 2018, 48(6: 1626-1636. DOI: 10.1002/jmri.26178.
[19]
ZHONG Y, CHALISE P, HE J H. Nested cross-validation with ensemble feature selection and classification model for high-dimensional biological data[J]. Commun Stat Simul Comput, 2023, 52(1: 110-125. DOI: 10.1080/03610918.2020.1850790.
[20]
DELONG E R, DELONG D M, CLARKE-PEARSON D L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988, 44(3: 837-845.
[21]
LI P, CHEN Y, LI Y L, et al. MRI features and prognosis of glioma associated with isocitrate dehydrogenase 1 mutation[J]. Chin J Gerontol, 2023, 43(3: 534-538. DOI: 10.3969/j.issn.1005-9202.2023.03.007.
[22]
PALDOR I, PEARCE F C, DRUMMOND K J, et al. Frontal glioblastoma multiforme may be biologically distinct from non-frontal and multilobar tumors[J/OL]. J Clin Neurosci, 2016, 34: 128-132 [2022-05-08]. https://pubmed.ncbi.nlm.nih.gov/27593971/. DOI: 10.1016/j.jocn.2016.05.017.
[23]
FERACO P, BACCI A, FERRAZZA P, et al. Magnetic resonance imaging derived biomarkers of IDH mutation status and overall survival in grade III astrocytomas[J/OL]. Diagnostics, 2020, 10(4: 247 [2022-05-08]. https://pubmed.ncbi.nlm.nih.gov/32340318/. DOI: 10.3390/diagnostics10040247.
[24]
ZHANG J, PENG H, WANG Y L, et al. Predictive role of the apparent diffusion coefficient and MRI morphologic features on IDH status in patients with diffuse glioma: a retrospective cross-sectional study[J/OL]. Front Oncol, 2021, 11: 640738 [2022-05-08]. https://pubmed.ncbi.nlm.nih.gov/34055608/. DOI: 10.3389/fonc.2021.640738.
[25]
GAO L Y, LI Y H, LI L, et al. Evaluation of IDH1 genotypes and tumor proliferation in gliomas by multiparametric diffusion magnetic resonance imaging[J]. Radiol Pract, 2023, 38(1: 39-46. DOI: 10.13609/j.cnki.1000-0313.2023.01.008.
[26]
TIAN J C, WU Y W, MA S, et al. The effects of isocitrate dehydrogenase 1 mutation on the proliferation of glioma cells[J]. Chin J Neuroanat, 2021, 37(5: 533-538. DOI: 10.16557/j.cnki.1000-7547.2021.05.006.
[27]
YAN J, ZHANG B, ZHANG S T, et al. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients[J/OL]. NPJ Precis Oncol, 2021, 5(1: 72 [2022-05-08]. https://pubmed.ncbi.nlm.nih.gov/34312469/. DOI: 10.1038/s41698-021-00205-z.
[28]
ZHOU H, CHANG K, BAI H X, et al. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas[J]. J Neurooncol, 2019, 142(2: 299-307. DOI: 10.1007/s11060-019-03096-0.
[29]
KIHIRA S, TSANKOVA N M, BAUER A, et al. Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion[J/OL]. Neurooncol Adv, 2021, 3(1: vdab051 [2022-05-08]. https://pubmed.ncbi.nlm.nih.gov/34056604/. DOI: 10.1093/noajnl/vdab051.
[30]
PARSONS D W, JONES S, ZHANG X S, et al. An integrated genomic analysis of human glioblastoma multiforme[J]. Science, 2008, 321(5897: 1807-1812. DOI: 10.1126/science.1164382.
[31]
HONG E K, CHOI S H, SHIN D J, et al. Radiogenomics correlation between MR imaging features and major genetic profiles in glioblastoma[J]. Eur Radiol, 2018, 28(10: 4350-4361. DOI: 10.1007/s00330-018-5400-8.
[32]
Cancer Genome Atlas Research Network, BRAT D J, VERHAAK R G, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas[J]. N Engl J Med, 2015, 372(26: 2481-2498. DOI: 10.1056/NEJMoa1402121.
[33]
HARTMANN C, HENTSCHEL B, SIMON M, et al. Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations[J]. Clin Cancer Res, 2013, 19(18: 5146-5157. DOI: 10.1158/1078-0432.CCR-13-0017.
[34]
TAN Y, ZHANG S T, WEI J W, et al. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery[J]. Eur Radiol, 2019, 29(7: 3325-3337. DOI: 10.1007/s00330-019-06056-4.
[35]
ARITA H, KINOSHITA M, KAWAGUCHI A, et al. Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade Ⅱ/Ⅲ gliomas[J/OL]. Sci Rep, 2018, 8(1: 11773 [2022-05-08]. https://pubmed.ncbi.nlm.nih.gov/30082856/. DOI: 10.1038/s41598-018-30273-4.

PREV Clinical study of preoperative conventional magnetic resonance imaging to predict the recurrence site of glioma
NEXT Multi-sequence MRI-based convolutional neural network predicts the methylation status of MGMT promoter in glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn