Share:
Share this content in WeChat
X
Clinical Article
Value of whole volume histogram features from Synthetic MRI in differentiating benign and malignant breast tumor
SUN Shengjun  LI Qin  LI Fangzheng  WU Shasha  NIU Qingliang 

SUN S J, LI Q, LI F Z, et al. Value of whole volume histogram features from Synthetic MRI in differentiating benign and malignant breast tumor[J]. Chin J Magn Reson Imaging, 2023, 14(8): 58-62, 164. DOI:10.12015/issn.1674-8034.2023.08.009.


[Abstract] Objective To explore the value of whole volume histogram features from synthetic MRI (SyMRI) in the diagnosis of benign and malignant breast tumors.Materials and Methods Clinical and imaging data of 186 patients with breast lesions were retrospective collected from October 2019 to November 2021. All patients were confirmed by puncture biopsy and/or surgical pathology, and preoperative conventional MRI and SyMRI scans were performed. The independent samples t-test or Mann-Whitney U test was chosen to compare quantitative parameters between benign and malignant breast lesions. Multivariate logistic regression model was developed based on the univariate result, and the corresponding ROC curves were obtained with AUC, sensitivity and specificity.Results A total of 150 patients with breast lesions (166 lesions in total) were enrolled. Multivariate analysis showed that T1-90th (P=0.002), T1-entropy (P=0.001) and proton density-kurtosis (P=0.014) were independent predictors for the differentiation of benign and malignant breast lesions. The AUC of differentiating benign and malignant breast lesions by multivariate logistic regression model was 0.89 (95% CI: 0.84-0.94), with the sensitivity of 85.15% and the specificity of 81.97%.Conclusions The whole volume histogram parameters from SyMRI can provide a basis for accurate diagnosis of identifying benign and malignant breast lesions.
[Keywords] breast neoplasms;distinguish between benign and malignant;magnetic resonance imaging;synthetic magnetic resonance imaging;histogram;quantitative

SUN Shengjun1   LI Qin2   LI Fangzheng1   WU Shasha2   NIU Qingliang2*  

1 School of Medical Imaging, Weifang Medical College, Weifang 261000, China

2 Center of Medicine Imaging, Weifang Traditional Chinese Medical Hospital, Weifang 261041, China

Corresponding author: Niu QL, E-mail: qingliangniu@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Shandong Province (No. ZR202103060229).
Received  2022-12-12
Accepted  2023-07-20
DOI: 10.12015/issn.1674-8034.2023.08.009
SUN S J, LI Q, LI F Z, et al. Value of whole volume histogram features from Synthetic MRI in differentiating benign and malignant breast tumor[J]. Chin J Magn Reson Imaging, 2023, 14(8): 58-62, 164. DOI:10.12015/issn.1674-8034.2023.08.009.

[1]
BYERS T, WENDER R C, JEMAL A, et al. The American Cancer Society challenge goal to reduce US cancer mortality by 50% between 1990 and 2015: results and reflections[J]. CA Cancer J Clin, 2016, 66(5): 359-369. DOI: 10.3322/caac.21348.
[2]
FENG R M, ZONG Y N, CAO S M, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics?[J/OL]. Cancer Commun, 2019, 39(1): 22 [2022-12-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487510/. DOI: 10.1186/s40880-019-0368-6.
[3]
MANN R M, BALLEYGUIER C, BALTZER P A, et al. Breast MRI: EUSOBI recommendations for women's information[J]. Eur Radiol, 2015, 25(12): 3669-3678. DOI: 10.1007/s00330-015-3807-z.
[4]
PINKER K, MOY L, SUTTON E J, et al. Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging[J]. Invest Radiol, 2018, 53(10): 587-595. DOI: 10.1097/RLI.0000000000000465.
[5]
BALTZER A, DIETZEL M, KAISER C G, et al. Combined reading of Contrast Enhanced and Diffusion Weighted Magnetic Resonance Imaging by using a simple sum score[J]. Eur Radiol, 2016, 26(3): 884-891. DOI: 10.1007/s00330-015-3886-x.
[6]
ZHONG M H, YANG Z Q, YAO C, et al. Correlation between quantitative DCE-MRI parameters, ADC values and the expressions of p53 and CK56 in breast cancer[J]. Int J Med Radiol, 2021, 44(4): 403-407. DOI: 10.19300/j.2021.L18779.
[7]
ZHU C R, CHEN K Y, LI P, et al. Accuracy of multiparametric MRI in distinguishing the breast malignant lesions from benign lesions: a meta-analysis[J]. Acta Radiol, 2021, 62(10): 1290-1297. DOI: 10.1177/0284185120963900.
[8]
DORRIUS M D, DIJKSTRA H, OUDKERK M, et al. Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis[J]. Eur Radiol, 2014, 24(11): 2835-2847. DOI: 10.1007/s00330-014-3338-z.
[9]
SUH Y H, KANG Y, BAEK M J, et al. T2 relaxation time shortening in the cochlea of patients with sudden sensory neuronal hearing loss: a retrospective study using quantitative synthetic magnetic resonance imaging[J]. Eur Radiol, 2021, 31(9): 6438-6445. DOI: 10.1007/s00330-021-07749-5.
[10]
PIRKL C M, NUNEZ-GONZALEZ L, KOFLER F, et al. Accelerated 3D whole-brain T1, T2, and proton density mapping: feasibility for clinical glioma MR imaging[J]. Neuroradiology, 2021, 63(11): 1831-1851. DOI: 10.1007/s00234-021-02703-0.
[11]
GRANBERG T, UPPMAN M, HASHIM F, et al. Clinical feasibility of synthetic MRI in multiple sclerosis: a diagnostic and volumetric validation study[J]. AJNR Am J Neuroradiol, 2016, 37(6): 1023-1029. DOI: 10.3174/ajnr.A4665.
[12]
WARNTJES J B, LEINHARD O D, WEST J, et al. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage[J]. Magn Reson Med, 2008, 60(2): 320-329. DOI: 10.1002/mrm.21635.
[13]
WARNTJES J B, DAHLQVIST O, LUNDBERG P. Novel method for rapid, simultaneous T1, T2*, and proton density quantification[J]. Magn Reson Med, 2007, 57(3): 528-537. DOI: 10.1002/mrm.21165.
[14]
MATSUDA M, TSUDA T, EBIHARA R, et al. Enhanced masses on contrast-enhanced breast: differentiation using a combination of dynamic contrast-enhanced MRI and quantitative evaluation with synthetic MRI[J]. J Magn Reson Imaging, 2021, 53(2: 381-391. DOI: 10.1002/jmri.27362.
[15]
SUN S Y, LI Z L, NIE L S, et al. The value of synthetic MRI combined with diffusion weighted imaging in differential diagnosis of benign and malignant breast lesions[J]. Chin J Radiol, 2021, 55(6: 597-604. DOI: 10.3760/cma.j.cn112149-20200717-00927.
[16]
GAO W B, YANG Q X, CHEN X, et al. The value of synthetic MRI in the differential diagnosis of benign and malignant breast lesions[J]. Chin J Radiol, 2021, 55(6: 605-608. DOI: 10.3760/cma.j.cn112149-20200831-01043.
[17]
JI S, YANG D J, LEE J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4: 1013-1025. DOI: 10.1002/jmri.27440.
[18]
BURRAGE M K, SHANMUGANATHAN M, ZHANG Q, et al. Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods[J/OL]. Sci Rep, 2021, 11(1: 13568 [2022-12-10]. https://pubmed.ncbi.nlm.nih.gov/34193894/. DOI: 10.1038/s41598-021-92923-4.
[19]
CUI Y D, HAN S Y, LIU M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2: 552-564. DOI: 10.1002/jmri.27075.
[20]
ZHANG N N, LV Y Q, LIU Y, et al. T2 mapping in the quantitative evaluation of articular cartilage changes in children with hemophilia: a pilot study[J]. Pediatr Investig, 2018, 2(4: 242-247. DOI: 10.1002/ped4.12099.
[21]
LI Q, XIAO Q, YANG M, et al. Histogram analysis of quantitative parameters from synthetic MRI: correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer[J/OL]. Eur J Radiol, 2021, 139: 109697 [2022-12-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028183/. DOI: 10.1016/j.ejrad.2021.109697.
[22]
PETERS N H, BOREL RINKES I H, ZUITHOFF N P, et al. Meta-analysis of MR imaging in the diagnosis of breast lesions[J]. Radiology, 2008, 246(1: 116-124. DOI: 10.1148/radiol.2461061298.
[23]
SONG M N, DONG L, HE H, et al. Value of syMRI and DWI quantitative parameters measured using different regions of interest method in differentiating benign and malignant breast lesions[J]. Chin J Magn Reson Imag, 2022, 13(6: 17-22, 27. DOI: 10.12015/issn.1674-8034.2022.06.004.
[24]
ARAKI T, INOUYE T, SUZUKI H, et al. Magnetic resonance imaging of brain tumors: measurement of T1. Work in progress[J]. Radiology, 1984, 150(1: 95-98. DOI: 10.1148/radiology.150.1.6689793.
[25]
MENG T B, HE N, HE H Q, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI[J/OL]. Cancer Imaging, 2020, 20(1: 88 [2022-12-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737277/. DOI: 10.1186/s40644-020-00365-4.
[26]
ZHANG Y P, LI X H, WANG F, et al. Quantitative diagnosis of non-contrast-enhanced T1 mapping in hemangioma, hepatocellular carcinoma and hepatic metastases[J]. Chin J Med Imag, 2021, 29(12: 1216-1221. DOI: 10.3969/j.issn.1005-5185.2021.12.010.
[27]
TRÉDAN O, LACROIX-TRIKI M, GUIU S, et al. Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model[J]. Target Oncol, 2015, 10(2: 189-198. DOI: 10.1007/s11523-014-0334-9.
[28]
SUO S T, ZHANG D D, CHENG F, et al. Added value of mean and entropy of apparent diffusion coefficient values for evaluating histologic phenotypes of invasive ductal breast cancer with MR imaging[J]. Eur Radiol, 2019, 29(3: 1425-1434. DOI: 10.1007/s00330-018-5667-9.
[29]
LIU S, ZHENG H H, ZHANG Y J, et al. Whole-volume apparent diffusion coefficient-based entropy parameters for assessment of gastric cancer aggressiveness[J]. J Magn Reson Imaging, 2018, 47(1: 168-175. DOI: 10.1002/jmri.25752.
[30]
BLUESTEIN K T, PITT D, KNOPP M V, et al. T1 and proton density at 7 T in patients with multiple sclerosis: an initial study[J]. Magn Reson Imaging, 2012, 30(1: 19-25. DOI: 10.1016/j.mri.2011.07.018.
[31]
GRACIEN R M, REITZ S C, HOF S M, et al. Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex[J]. Eur Radiol, 2016, 26(8: 2578-2586. DOI: 10.1007/s00330-015-4072-x.
[32]
GAO W B, ZHANG S Q, GUO J X, et al. Investigation of synthetic relaxometry and diffusion measures in the differentiation of benign and malignant breast lesions as compared to BI-RADS[J]. J Magn Reson Imaging, 2021, 53(4: 1118-1127. DOI: 10.1002/jmri.27435.
[33]
ÖNNER H, ABDÜLREZZAK Ü, TUTUŞ A. Could the skewness and kurtosis texture parameters of lesions obtained from pretreatment Ga-68 DOTA-TATE PET/CT images predict receptor radionuclide therapy response in patients with gastroenteropancreatic neuroendocrine tumors?[J]. Nucl Med Commun, 2020, 41(10: 1034-1039. DOI: 10.1097/MNM.0000000000001231.
[34]
LIU H L, ZONG M, WEI H, et al. Preoperative predicting malignancy in breast mass-like lesions: value of adding histogram analysis of apparent diffusion coefficient maps to dynamic contrast-enhanced magnetic resonance imaging for improving confidence level[J]. Br J Radiol, 2017, 90(1079: 20170394 [2022-12-10]. https://pubmed.ncbi.nlm.nih.gov/28876982/. DOI: 10.1259/bjr.20170394.
[35]
LIU L, YIN B, SHEK K, et al. Role of quantitative analysis of T2 relaxation time in differentiating benign from malignant breast lesions[J]. J Int Med Res, 2018, 46(5: 1928-1935. DOI: 10.1177/0300060517721071.

PREV Comparative study on the application of Dixon and SPAIR in thyroid-associated ophthalmopathy
NEXT Imaging radiomics features based on DCE-MRI combined with ADC in predicting expression level of Ki-67 in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn