Share:
Share this content in WeChat
X
Clinical Article
The value of radiomics model based on ZOOMit DWI in the diagnosis of clinically significant prostate cancer
QIAO Xiaomeng  BAO Jie  HU Chenhan  CAO Changhao  HU Chunhong  WANG Ximing 

QIAO X M, BAO J, HU C H, et al. The value of radiomics model based on ZOOMit DWI in the diagnosis of clinically significant prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(8): 79-85. DOI:10.12015/issn.1674-8034.2023.08.013.


[Abstract] Objective To compare the value between the radiomics models based on zoomed imaging technique with parallel transmission diffusion weighted imaging (ZOOMit DWI) and readout segmentation of long variable echo-trains (RESOLVE) DWI for the diagnosis of clinically significant prostate cancer (csPCa).Materials and Methods A total of 168 patients were included in this retrospective study, including 83 cases of csPCa and 85 cases of non-csPCa. The patients were grouped randomly into a training set (n=117) and a test set (n=51) in a ratio of 7∶3. Optimal radiomics features were selected by using Pearson correlation coefficient (PCC) method, analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the training set. Logistic regression was used to develop the models. The single sequence radiomics models were built to predict csPCa including ZOOMit DWI, ZOOMit apparent diffusion coefficient (ADC), RESOLVE DWI and RESOLVE ADC. The bi-parametric MRI (bpMRI) radiomics models was built combining DWI sequence with better diagnostic performance and T2-weighted imaging (T2WI). The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of the radiomics models. The DeLong test was performed to statistically compare areas under the curve (AUC).Results In the test group, ZOOMit DWI had higher AUC than RESOLVE DWI (0.917 vs. 0.851, P=0.022); ZOOMit ADC had higher AUC than RESOLVE ADC, of borderline statistical significance (0.948 vs. 0.871, P=0.052). The bpMRI radiomics models was established based on T2WI, ZOOMit DWI and ZOOMit ADC. The AUC of the bpMRI radiomics model was 0.937 in the test set, which was significantly higher than that of prostate-specific antigen (PSA) (0.792, P=0.012).Conclusions The radiomics models based on the ZOOMit DWI sequence had better diagnostic performance for csPCa than those based on the RESOLVE DWI sequence. The bpMRI radiomics model combined ZOOMit DWI sequence and T2WI showed great diagnostic value for csPCa.
[Keywords] clinically significant prostate cancer;diffusion weighted imaging;radiomics;magnetic resonance imaging;diagnostic performance

QIAO Xiaomeng   BAO Jie   HU Chenhan   CAO Changhao   HU Chunhong   WANG Ximing*  

Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China

Corresponding author: Wang XM, E-mail: wangximing1998@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Medical and Health Science and Technology Innovation Program in Suzhou (No. SKY2022003); Special Program for Diagnosis and Treatment Technology of Clinical Key Diseases in Suzhou (No. LCZX202001).
Received  2022-08-26
Accepted  2023-06-29
DOI: 10.12015/issn.1674-8034.2023.08.013
QIAO X M, BAO J, HU C H, et al. The value of radiomics model based on ZOOMit DWI in the diagnosis of clinically significant prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(8): 79-85. DOI:10.12015/issn.1674-8034.2023.08.013.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
CULP M B, SOERJOMATARAM I, EFSTATHIOU J A, et al. Recent global patterns in prostate cancer incidence and mortality rates[J]. Eur Urol, 2020, 77(1): 38-52. DOI: 10.1016/j.eururo.2019.08.005.
[3]
ALBERTSEN P C. Prostate cancer screening and treatment: where have we come from and where are we going?[J]. BJU Int, 2020, 126(2): 218-224. DOI: 10.1111/bju.15153.
[4]
STABILE A, GIGANTI F, ROSENKRANTZ A B, et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions[J]. Nat Rev Urol, 2020, 17(1): 41-61. DOI: 10.1038/s41585-019-0212-4.
[5]
CHENG X Q, CHEN Y T, XU H, et al. Avoiding unnecessary systematic biopsy in clinically significant prostate cancer: comparison between MRI-based radiomics model and PI-RADS category[J]. J Magn Reson Imaging, 2023, 57(2): 578-586. DOI: 10.1002/jmri.28333.
[6]
HECTORS S J, CHERNY M, YADAV K K, et al. Radiomics features measured with multiparametric magnetic resonance imaging predict prostate cancer aggressiveness[J]. J Urol, 2019, 202(3): 498-505. DOI: 10.1097/JU.0000000000000272.
[7]
PADHANI A R, LIU G Y, KOH D M, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations[J]. Neoplasia, 2009, 11(2): 102-125. DOI: 10.1593/neo.81328.
[8]
ZHANG H, HUANG H J, ZHANG Y Y, et al. Diffusion-weighted MRI to assess sacroiliitis: improved image quality and diagnostic performance of readout-segmented echo-planar imaging (EPI) over conventional single-shot EPI[J]. AJR Am J Roentgenol, 2021, 217(2): 450-459. DOI: 10.2214/AJR.20.23953.
[9]
HUANG C C, ZHAN C N, HU Y Q, et al. Histogram analysis of breast diffusion kurtosis imaging: a comparison between readout-segmented and single-shot echo-planar imaging sequence[J]. Quant Imaging Med Surg, 2023, 13(2): 735-746. DOI: 10.21037/qims-22-475.
[10]
THIERFELDER K M, SCHERR M K, NOTOHAMIPRODJO M, et al. Diffusion-weighted MRI of the prostate: advantages of zoomed EPI with parallel-transmit-accelerated 2D-selective excitation imaging[J]. Eur Radiol, 2014, 24(12): 3233-3241. DOI: 10.1007/s00330-014-3347-y.
[11]
BRENDLE C, MARTIROSIAN P, SCHWENZER N F, et al. Diffusion-weighted imaging in the assessment of prostate cancer: comparison of zoomed imaging and conventional technique[J]. Eur J Radiol, 2016, 85(5): 893-900. DOI: 10.1016/j.ejrad.2016.02.020.
[12]
HU L, ZHOU D W, FU C X, et al. Advanced zoomed diffusion-weighted imaging vs. full-field-of-view diffusion-weighted imaging in prostate cancer detection: a radiomic features study[J]. Eur Radiol, 2021, 31(3): 1760-1769. DOI: 10.1007/s00330-020-07227-4.
[13]
EPSTEIN J I, EGEVAD L, AMIN M B, et al. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system[J]. Am J Surg Pathol, 2016, 40(2): 244-252. DOI: 10.1097/PAS.0000000000000530.
[14]
SONG Y, ZHANG J, ZHANG Y D, et al. FeAture Explorer (FAE): a tool for developing and comparing radiomics models[J/OL]. PLoS One, 2020, 15(8): e0237587 [2022-01-20]. https://pubmed.ncbi.nlm.nih.gov/32804986. DOI: 10.1371/journal.pone.0237587.
[15]
MONTOYA PEREZ I, MERISAARI H, JAMBOR I, et al. Detection of prostate cancer using biparametric prostate MRI, radiomics, and kallikreins: a retrospective multicenter study of men with a clinical suspicion of prostate cancer[J]. J Magn Reson Imaging, 2022, 55(2): 465-477. DOI: 10.1002/jmri.27811.
[16]
CHEN T, LI M J, GU Y F, et al. Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. PI-RADS v2[J]. J Magn Reson Imaging, 2019, 49(3): 875-884. DOI: 10.1002/jmri.26243.
[17]
MIN X D, LI M, DONG D, et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross-validation of a machine learning method[J]. Eur J Radiol, 2019, 115: 16-21. DOI: 10.1016/j.ejrad.2019.03.010.
[18]
GONG L X, XU M, FANG M J, et al. Noninvasive prediction of high-grade prostate cancer via biparametric MRI radiomics[J]. J Magn Reson Imaging, 2020, 52(4): 1102-1109. DOI: 10.1002/jmri.27132.
[19]
YıLDıRıM İ O, SAĞLıK S, ÇELIK H. Conventional and ZOOMit DWI for evaluation of testis in patients with ipsilateral varicocele[J]. Am J Roentgenol, 2017, 208(5): 1045-1050. DOI: 10.2214/ajr.16.17292.
[20]
KIM H, LEE J M, YOON J H, et al. Reduced field-of-view diffusion-weighted magnetic resonance imaging of the pancreas: comparison with conventional single-shot echo-planar imaging[J]. Korean J Radiol, 2015, 16(6): 1216-1225. DOI: 10.3348/kjr.2015.16.6.1216.
[21]
ATTENBERGER U I, TAVAKOLI A, STOCKER D, et al. Reduced and standard field-of-view diffusion weighted imaging in patients with rectal cancer at 3 T-Comparison of image quality and apparent diffusion coefficient measurements[J/OL]. Eur J Radiol, 2020, 131: 109257 [2022-01-20]. https://pubmed.ncbi.nlm.nih.gov/32947092. DOI: 10.1016/j.ejrad.2020.109257.
[22]
SUN K B, ZHONG Z, DAN G Y, et al. Three-dimensional reduced field-of-view imaging (3D-rFOVI)[J]. Magn Reson Med, 2022, 87(5): 2372-2379. DOI: 10.1002/mrm.29121.
[23]
SIM K C, PARK B J, HAN N Y, et al. Efficacy of ZOOMit coronal diffusion-weighted imaging and MR texture analysis for differentiating between benign and malignant distal bile duct strictures[J]. Abdom Radiol (NY), 2020, 45(8): 2418-2429. DOI: 10.1007/s00261-020-02625-0.
[24]
THIAN Y L, XIE W, PORTER D A, et al. Readout-segmented echo-planar imaging for diffusion-weighted imaging in the pelvis at 3T-A feasibility study[J]. Acad Radiol, 2014, 21(4): 531-537. DOI: 10.1016/j.acra.2014.01.005.
[25]
PENG S Y, GUO Y H, ZHANG X Y, et al. High-resolution DWI with simultaneous multi-slice readout-segmented echo planar imaging for the evaluation of malignant and benign breast lesions[J/OL]. Diagnostics (Basel), 2021, 11(12): 2273 [2022-03-20]. https://pubmed.ncbi.nlm.nih.gov/34943509. DOI: 10.3390/diagnostics11122273.
[26]
XIE S M, MASOKANO I B, LIU W G, et al. Comparing the clinical utility of single-shot echo-planar imaging and readout-segmented echo-planar imaging in diffusion-weighted imaging of the liver at 3 Tesla[J/OL]. Eur J Radiol, 2021, 135: 109472 [2022-03-20]. https://pubmed.ncbi.nlm.nih.gov/33370640. DOI: 10.1016/j.ejrad.2020.109472.
[27]
LIU W G, LIU H, XIE S M, et al. Comparing the clinical utility of single-shot, readout-segmented and zoomit echo-planar imaging in diffusion-weighted imaging of the kidney at 3 T[J/OL]. Sci Rep, 2022, 12(1): 12389 [2022-03-20]. https://pubmed.ncbi.nlm.nih.gov/35859112. DOI: 10.1038/s41598-022-16670-w.
[28]
SEEGER A, BATRA M, SÜSSKIND D, et al. Assessment of uveal melanomas using advanced diffusion-weighted imaging techniques: value of reduced field of view DWI ("zoomed DWI") and readout-segmented DWI (RESOLVE)[J]. Acta Radiol, 2019, 60(8): 977-984. DOI: 10.1177/0284185118806666.
[29]
DAN H L, TAN Y C, YANG L, et al. Image quality assessment on MR images of the prostate acquired in different diffusion weighted sequences[J]. Chin J Magn Reson Imaging, 2021, 12(3): 54-58. DOI: 10.12015/issn.1674-8034.2021.03.012.
[30]
KLINGEBIEL M, ULLRICH T, QUENTIN M, et al. Advanced diffusion weighted imaging of the prostate: comparison of readout-segmented multi-shot, parallel-transmit and single-shot echo-planar imaging[J/OL]. Eur J Radiol, 2020, 130: 109161 [2022-03-15]. https://pubmed.ncbi.nlm.nih.gov/32650128. DOI: 10.1016/j.ejrad.2020.109161.
[31]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.

PREV Microsatellite instability of rectal cancer based on magnetic resonance diffusion kurtosis imaging
NEXT The development and external validation of a model based on MRI quantification, pathology, and blood cell parameters to predict the efficacy of concurrent chemoradiotherapy for stage Ⅱ‍B-‍Ⅲ cervical cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn