Share:
Share this content in WeChat
X
Technical Article
Value of frequency offset in image quality optimization of fast spin echo T1WI SPIR fat suppression sequence for pediatric thoracic spine MRI
LÜ Yanqiu  WANG Wei  GAO Shuaiyi  HU Di  ZHENG Dandan  PENG Yun 

LÜ Y Q, WANG W, GAO S Y, et al. Value of frequency offset in image quality optimization of fast spin echo T1WI SPIR fat suppression sequence for pediatric thoracic spine MRI[J]. Chin J Magn Reson Imaging, 2023, 14(8): 108-112, 117. DOI:10.12015/issn.1674-8034.2023.08.017.


[Abstract] Objective To optimize frequency offset of T1WI spectral pre-saturation with inversion recovery (SPIR) fat suppression sequence and improve the image quality of T1WI SPIR fat suppression sequence for thoracic spine.Materials and Methods Retrospective subjective and objective image quality evaluation for 9 T1WI SPIR fat suppression sequences with different frequency offsets (40, 60, 80, 100, 120, 127, 140, 160, 180 Hz) were performed in 36 children with thoracic spine MRI. Two senior radiologists used a 4-point scale to score subjective image quality of the 9 T1WI SPIR sequences, including the homogeneity of vertebral and back fat suppression, and overall image quality. The signal to noise ratio (SNR) of the vertebra, cerebrospinal fluid, intervertebral disc, and spinal cord, and the contrast to noise ratio (CNR) among the them were calculated. Kruskal-Wallis non-parametric test was used to evaluate subjective image quality scores, and one-way analysis of variance was used to evaluate SNR and CNR, LSD used for pairwise comparison among groups.Results (1) There were significant differences in the homogeneity of the vertebral fat suppression (F=168.49, P<0.001), homogeneity of the back fat suppression (F=96.10, P<0.001) and overall image quality (F=27.11, P<0.001) among 9 T1WI SPIR sequences with different frequency offsets. The 4 sequences, with the frequency offsets of 40, 60, 80 and 100 Hz, showed best homogeneity of the vertebral, and there were no significant differences. The 5 sequences, with frequency offsets of the 100, 120, 127, 140 and 160 Hz, showed best homogeneity of the back fat suppression, and there were no significant differences. The 2 sequences, with the frequency offsets of 80 and 100 Hz, showed best overall image quality, and there were no significant differences. (2) There were significant differences in the SNR of vertebra (F=2.83, P<0.05) and CNR between vetebra and cerebrospinal fluid (F=2.67, P<0.05) among 6 T1WI SPIR sequences with different frequency offsets. The 3 sequences, with the frequency offset of 40, 60, 80 Hz, had no significant differences in the SNR of vertebra and CNR between vetebra and cerebrospinal fluid, and T1WI SPIR sequence with frequency offset of 40 Hz had higher the SNR of vertebra and CNR between vertebra and cerebrospinal fluid than that of T1WI SPIR sequences with frequency offsets of 100, 120, 127 Hz. There were no significant difference in the SNR and CNR of the remaining studied tissues for the 6 sequences.Conclusions When the frequency offsets were 80 and 100 Hz, the overall image quality of T1WI SPIR sequence of thoracic spine could be improved.
[Keywords] thoracic spine disease;fat suppression;image quality;children;fast spin echo;magnetic resonance imaging

LÜ Yanqiu1   WANG Wei1   GAO Shuaiyi1   HU Di1   ZHENG Dandan2   PENG Yun1*  

1 Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China

2 Department of Clinical & Technical Support, Philips Healthcare, Beijing 100600, China

Corresponding author: Peng Y, E-mail: ppengyun@yahoo.com

Conflicts of interest   None.

Received  2023-03-27
Accepted  2023-07-21
DOI: 10.12015/issn.1674-8034.2023.08.017
LÜ Y Q, WANG W, GAO S Y, et al. Value of frequency offset in image quality optimization of fast spin echo T1WI SPIR fat suppression sequence for pediatric thoracic spine MRI[J]. Chin J Magn Reson Imaging, 2023, 14(8): 108-112, 117. DOI:10.12015/issn.1674-8034.2023.08.017.

[1]
LI S, YU X X, SHI R C, et al. MRI-based radiomics nomogram for differentiation of solitary metastasis and solitary primary tumor in the spine[J/OL]. BMC Med Imaging, 2023, 23(1): 29 [2023-03-26]. https://pubmed.ncbi.nlm.nih.gov/36755233/. DOI: 10.1186/s12880-023-00978-8.
[2]
YOKOTA H, TALI E. Spinal infection[J]. Neuroimaging Clin N Am, 2023, 33(1): 167-183. DOI: 10.1016/j.nic.2022.07.015.
[3]
LI Y T, XIONG Y, HOU B W, et al. Comparison of zero echo time MRI with T1-weighted fast spin echo for the recognition of sacroiliac joint structural lesions using CT as the reference standard[J]. Eur Radiol, 2022, 32(6): 3963-3973. DOI: 10.1007/s00330-021-08513-5.
[4]
IZZO R, QASSAB S AL, POPOLIZIO T, et al. Imaging of thoracolumbar spine traumas[J/OL]. Eur J Radiol, 2022, 154: 110343 [2023-03-26]. https://pubmed.ncbi.nlm.nih.gov/35714491/. DOI: 10.1016/j.ejrad.2022.110343.
[5]
SARTORETTI E, SARTORETTI-SCHEFER S, VAN SMOORENBURG L, et al. Spiral gradient echo versus Cartesian turbo spin echo imaging for sagittal contrast-enhanced fat-suppressed T1 weighted spine MRI: an inter-individual comparison study[J/OL]. Br J Radiol, 2022, 95(1135): 20210354 [2023-03-26]. https://pubmed.ncbi.nlm.nih.gov/34762522/. DOI: 10.1259/bjr.20210354.
[6]
HU H H, BENKERT T, SMITH M, et al. Post-contrast T1-weighted spine 3T MRI in children using a golden-angle radial acquisition[J]. Neuroradiology, 2019, 61(3): 341-349. DOI: 10.1007/s00234-019-02165-5.
[7]
BRATKE G, RAU R, WEISS K, et al. Accelerated MRI of the lumbar spine using compressed sensing: quality and efficiency[J/OL]. J Magn Reson Imaging, 2019, 49(7): e164-e175 [2023-03-26]. https://pubmed.ncbi.nlm.nih.gov/30267462/. DOI: 10.1002/jmri.26526.
[8]
FAUTZ H P, BÜCHERT M, HUSSTEDT H, et al. TSE-sequences with spin-echo contrast[J]. Magn Reson Med, 2000, 43(4): 577-582. DOI: 10.1002/(sici)1522-2594(200004)43:4<577:aid-mrm12>3.0.co;2-d.
[9]
HENKELMAN R M, HARDY P A, BISHOP J E, et al. Why fat is bright in RARE and fast spin-echo imaging[J]. J Magn Reson Imaging, 1992, 2(5): 533-540. DOI: 10.1002/jmri.1880020511.
[10]
BLEY T A, WIEBEN O, FRANÇOIS C J, et al. Fat and water magnetic resonance imaging[J]. J Magn Reson Imaging, 2010, 31(1): 4-18. DOI: 10.1002/jmri.21895.
[11]
AOKI T, YAMASHITA Y, OKI H, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) of the wrist and finger at 3T: comparison with chemical shift selective fat suppression images[J]. J Magn Reson Imaging, 2013, 37(3): 733-738. DOI: 10.1002/jmri.23795.
[12]
MA J F. Dixon techniques for water and fat imaging[J]. J Magn Reson Imaging, 2008, 28(3): 543-558. DOI: 10.1002/jmri.21492.
[13]
FENG F F, LI W J, SUN J, et al. A comparative study of the effect of SPAIR and Dixon techniques on fat suppression in spine magnetic resonance imaging[J]. China Mod Dr, 2022, 60(31): 57-59, 72.
[14]
LIU J B, SHI J. Application value of magnetic resonance water-fat separation imaging technique in postoperative imaging assessment of patients with spinal metal internal fixation[J]. China Med Pharm, 2022, 12(11): 159-162. DOI: 10.3969/j.issn.2095-0616.2022.11.041.
[15]
GASPAR A S, NUNES R G, FERRAZZI G, et al. Optimizing maternal fat suppression with constrained image-based shimming in fetal MR[J]. Magn Reson Med, 2019, 81(1): 477-485. DOI: 10.1002/mrm.27375.
[16]
SZUMOWSKI J, COSHOW W R, LI F, et al. Phase unwrapping in the three-point Dixon method for fat suppression MR imaging[J]. Radiology, 1994, 192(2): 555-561. DOI: 10.1148/radiology.192.2.8029431.
[17]
RYBICKI F J, CHUNG T, REID J, et al. Fast three-point Dixon MR imaging using low-resolution images for phase correction: a comparison with chemical shift selective fat suppression for pediatric musculoskeletal imaging[J]. AJR Am J Roentgenol, 2001, 177(5): 1019-1023. DOI: 10.2214/ajr.177.5.1771019.
[18]
HUIJGEN W H F, VAN RIJSWIJK C S P, BLOEM J L. Is fat suppression in T1 and T2 FSE with mDixon superior to the frequency selection-based SPAIR technique in musculoskeletal tumor imaging?[J]. Skeletal Radiol, 2019, 48(12): 1905-1914. DOI: 10.1007/s00256-019-03227-8.
[19]
VAN VUCHT N, SANTIAGO R, LOTTMANN B, et al. The Dixon technique for MRI of the bone marrow[J]. Skeletal Radiol, 2019, 48(12): 1861-1874. DOI: 10.1007/s00256-019-03271-4.
[20]
OMOUMI P. The Dixon method in musculoskeletal MRI: from fat-sensitive to fat-specific imaging[J]. Skeletal Radiol, 2022, 51(7): 1365-1369. DOI: 10.1007/s00256-021-03950-1.
[21]
CHEN L, HU H, CHEN H H, et al. Usefulness of two-point Dixon T2-weighted imaging in thyroid-associated ophthalmopathy: comparison with conventional fat saturation imaging in fat suppression quality and staging performance[J/OL]. Br J Radiol, 2021, 94(1118): 20200884 [2023-03-26]. https://pubmed.ncbi.nlm.nih.gov/33353397/. DOI: 10.1259/bjr.20200884.
[22]
SHI C L, FU H, GUO Y K, et al. Application value of T2WI-Dixon water fat separation sequence in the evaluation of muscle fat infiltration and edema in patient with Duchenne muscular dystrophy[J]. Chin J Magn Reson Imag, 2022, 13(7): 96-102. DOI: 10.12015/issn.1674-8034.2022.07.017.
[23]
LEE S M, CHOI D S, SHIN H S, et al. FSE T2-weighted two-point Dixon technique for fat suppression in the lumbar spine: comparison with SPAIR technique[J]. Diagn Interv Radiol, 2018, 24(3): 175-180. DOI: 10.5152/dir.2018.17320.
[24]
YAO G, LIANG Z P, YANG Y F, et al. Comparison of fat suppression effects between Dixon and SPAIR techniques in the neck MRI[J]. Chin J Radiol, 2020, 54(7): 707-712. DOI: 10.3760/cma.j.cn112149-20200416-00563.
[25]
CAKMAK P, HEREK D, YAGCI A B, et al. Efficiency of fat suppression in T1-weighted inner ear magnetic resonance imaging: multipoint Dixon method versus hybrid techniques[J]. Curr Med Imaging, 2021, 17(7): 884-888. DOI: 10.2174/1573405617666210114141300.
[26]
XIANG Q S, AN L. Water-fat imaging with direct phase encoding[J]. J Magn Reson Imaging, 1997, 7(6): 1002-1015. DOI: 10.1002/jmri.1880070612.
[27]
MA J, JACKSON E F, KUMAR A J, et al. Improving fat-suppressed T2-weighted imaging of the head and neck with 2 fast spin-echo Dixon techniques: initial experiences[J]. AJNR Am J Neuroradiol, 2009, 30(1): 42-45. DOI: 10.3174/ajnr.A1132.
[28]
SHIGENAGA Y, TAKENAKA D, HASHIMOTO T, et al. Robustness of a combined modified Dixon and PROPELLER sequence with two interleaved echoes in clinical head and neck MRI[J]. Magn Reson Med Sci, 2021, 20(1): 76-82. DOI: 10.2463/mrms.mp.2019-0161.

PREV Normalizing radiomics features from multiscale structural MRI of the adolescent brain
NEXT Misdiagnosis of the clivus angioleiomyoma: One case report
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn