Share:
Share this content in WeChat
X
Review
Research progress of neuroimaging texture analysis and radiomics in Parkinson's disease
WANG Jin  WANG Bo  WU Kunhua 

WANG J, WANG B, WU K H. Research progress of neuroimaging texture analysis and radiomics in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(8): 118-123. DOI:10.12015/issn.1674-8034.2023.08.020.


[Abstract] Texture analysis and radiomics are emerging fields of computer-aided imaging diagnosis, which can overcome the deficiency of visual diagnosis and assist in the diagnosis and identification of diseases by quantifying subtle information in medical images that is difficult to assess with the naked eye. Parkinson's disease (PD) is a complex progressive neurodegenerative disease with a high prevalence and low diagnostic accuracy. In recent years, a variety of neuroimaging methods based on texture analysis and radiomics had become the focus of PD research. In this paper, the research status and application prospects of the above fields are reviewed, aiming at providing new ideas for neuroimaging research of PD, and then providing more accurate imaging support for clinical diagnosis and treatment of PD.
[Keywords] Parkinson's disease;texture analysis;radiomics;magnetic resonance imaging;neuroimaging

WANG Jin1   WANG Bo2*   WU Kunhua2  

1 College of Medical, Kunming University of Science and Technology, the First People's Hospital of Yunnan Province (the Affiliated Hospital of Kunming University of Science and Technology), Kunming 650032, China

2 Department of MRI, the First People's Hospital of Yunnan Province (the Affiliated Hospital of Kunming University of Science and Technology), Kunming 650032, China

Corresponding author: Wang B, E-mail: wangbo871@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Key Research and Development Plan of China (No. 2018YFA0801403).
Received  2023-03-14
Accepted  2023-07-27
DOI: 10.12015/issn.1674-8034.2023.08.020
WANG J, WANG B, WU K H. Research progress of neuroimaging texture analysis and radiomics in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(8): 118-123. DOI:10.12015/issn.1674-8034.2023.08.020.

[1]
ADLER C H, BEACH T G, HENTZ J G, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study[J]. Neurology, 2014, 83(5): 406-412. DOI: 10.1212/WNL.0000000000000641.
[2]
CASTELLANO G, BONILHA L, LI L M, et al. Texture analysis of medical images[J]. Clin Radiol, 2004, 59(12): 1061-1069. DOI: 10.1016/j.crad.2004.07.008.
[3]
DE CARVALHO A M, VALOTTA S A, YUMI B S, et al. Texture analysis of high resolution MRI allows discrimination between febrile and afebrile initial precipitating injury in mesial temporal sclerosis[J]. Magn Reson Med, 2012, 68(5): 1647-1653. DOI: 10.1002/mrm.24174.
[4]
GHALATI M K, NUNES A, FERREIRA H, et al. Texture Analysis and Its Applications in Biomedical Imaging: A Survey[J]. IEEE Rev Biomed Eng, 2022, 15: 222-246. DOI: 10.1109/RBME.2021.3115703.
[5]
CAI J H, HE Y, ZHONG X L, et al. Magnetic Resonance Texture Analysis in Alzheimer's disease[J]. Acad Radiol, 2020, 27(12): 1774-1783. DOI: 10.1016/j.acra.2020.01.006.
[6]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[7]
SUORANTA S, HOLLI-HELENIUS K, KOSKENKORVA P, et al. 3D texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1[J/OL]. PLoS One, 2013, 8(7): e69905 [2023-06-02]. https://doi.org/10.1371/journal.pone.0069905. DOI: 10.1371/journal.pone.0069905.
[8]
ZHANG J, TONG L, WANG L, et al. Texture analysis of multiple sclerosis: a comparative study[J]. Magn Reson Imaging, 2008, 26(8): 1160-1166. DOI: 10.1016/j.mri.2008.01.016.
[9]
ZHANG J, YU C, JIANG G, et al. 3D texture analysis on MRI images of Alzheimer's disease[J]. Brain Imaging Behav, 2012, 6(1): 61-69. DOI: 10.1007/s11682-011-9142-3.
[10]
PERAN P, CHERUBINI A, ASSOGNA F, et al. Magnetic resonance imaging markers of Parkinson's disease nigrostriatal signature[J]. Brain, 2010, 133(11): 3423-3433. DOI: 10.1093/brain/awq212.
[11]
SIKIO M, HOLLI-HELENIUS K K, HARRISON L C, et al. MR image texture in Parkinson's disease: a longitudinal study[J]. Acta Radiol, 2015, 56(1): 97-104. DOI: 10.1177/0284185113519775.
[12]
LIU P, WANG H, ZHENG S, et al. Parkinson's Disease Diagnosis Using Neostriatum Radiomic Features Based on T2-Weighted Magnetic Resonance Imaging[J/OL]. Front Neurol, 2020, 11: 248 [2023-06-02]. https://doi.org/10.3389/fneur.2020.00248. DOI: 10.3389/fneur.2020.00248.
[13]
LIU P S, ZHENG S L, WANG H, et al. Diagnosis of Conventional T2 FLAIR Sequence Autoregressive Model Texture Analysis in Parkinson's Disease[J]. Chin J Med Imaging, 2019, 27(2): 107-111. DOI: 10.3969/j.issn.1005-5185.2019.02.006.
[14]
TUPE-WAGHMARE P, RAJAN A, PRASAD S, et al. Radiomics on routine T1-weighted MRI can delineate Parkinson's disease from multiple system atrophy and progressive supranuclear palsy[J]. Eur Radiol, 2021, 31(11): 8218-8227. DOI: 10.1007/s00330-021-07979-7.
[15]
SHU Z Y, CUI S J, WU X, et al. Predicting the progression of Parkinson's disease using conventional MRI and machine learning: An application of radiomic biomarkers in whole-brain white matter[J]. Magn Reson Med, 2021, 85(3): 1611-1624. DOI: 10.1002/mrm.28522.
[16]
STERLING N W, LEWIS M M, DU G, et al. Structural Imaging and Parkinson's Disease: Moving Toward Quantitative Markers of Disease Progression[J]. J Parkinsons Dis, 2016, 6(3): 557-567. DOI: 10.3233/JPD-160824.
[17]
HETT K, LYU I, TRUJILLO P, et al. Anatomical texture patterns identify cerebellar distinctions between essential tremor and Parkinson's disease[J]. Hum Brain Mapp, 2021, 42(8): 2322-2331. DOI: 10.1002/hbm.25331.
[18]
BETROUNI N, MOREAU C, ROLLAND A S, et al. Texture-based markers from structural imaging correlate with motor handicap in Parkinson's disease[J/OL]. Sci Rep, 2021, 11(1): 2724 [2023-06-02]. https://doi.org/10.1038/s41598-021-81209-4. DOI: 10.1038/s41598-021-81209-4.
[19]
CHAKRABORTY S, AICH S, KIM H C. 3D Textural, Morphological and Statistical Analysis of Voxel of Interests in 3T MRI Scans for the Detection of Parkinson's Disease Using Artificial Neural Networks[J]. Healthcare (Basel), 2020, 8(1): 34. DOI: 10.3390/healthcare8010034.
[20]
TAFURI B, LOMBARDI A, NIGRO S, et al. The impact of harmonization on radiomic features in Parkinson's disease and healthy controls: A multicenter study[J/OL]. Front Neurosci, 2022, 16: 1012287 [2023-06-02]. https://doi.org/10.3389/fnins.2022.1012287. DOI: 10.3389/fnins.2022.1012287.
[21]
SUN D, WU X, XIA Y, et al. Differentiating Parkinson's disease motor subtypes: A radiomics analysis based on deep gray nuclear lesion and white matter[J/OL]. Neurosci Lett, 2021, 760: 136083 [2023-06-02]. https://doi.org/10.1016/j.neulet.2021.136083. DOI: 10.1016/j.neulet.2021.136083.
[22]
SOLANA-LAVALLE G, ROSAS-ROMERO R. Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson's disease[J/OL]. Comput Methods Programs Biomed, 2021, 198: 105793 [2023-06-02]. https://doi.org/10.1016/j.cmpb.2020.105793. DOI: 10.1016/j.cmpb.2020.105793.
[23]
LITVAN I, AARSLAND D, ADLER C H, et al. MDS Task Force on mild cognitive impairment in Parkinson's disease: critical review of PD-MCI[J]. Mov Disord, 2011, 26(10): 1814-1824. DOI: 10.1002/mds.23823.
[24]
BETROUNI N, LOPES R, DEFEBVRE L, et al. Texture features of magnetic resonance images: A marker of slight cognitive deficits in Parkinson's disease[J]. Mov Disord, 2020, 35(3): 486-494. DOI: 10.1002/mds.27931.
[25]
DEVIGNES Q, VIARD R, BETROUNI N, et al. Posterior Cortical Cognitive Deficits Are Associated With Structural Brain Alterations in Mild Cognitive Impairment in Parkinson's Disease[J/OL]. Front Aging Neurosci, 2021, 13: 668559 [2023-06-02]. https://doi.org/10.3389/fnagi.2021.668559. DOI: 10.3389/fnagi.2021.668559.
[26]
TANG C, ZHAO X, WU W, et al. An individualized prediction of time to cognitive impairment in Parkinson's disease: A combined multi-predictor study[J/OL]. Neurosci Lett, 2021, 762: 136149 [2023-06-02]. https://doi.org/10.1016/j.neulet.2021.136149. DOI: 10.1016/j.neulet.2021.136149.
[27]
SIVARANJINI S, SUJATHA C M. Morphological analysis of subcortical structures for assessment of cognitive dysfunction in Parkinson's disease using multi-atlas based segmentation[J]. Cogn Neurodyn, 2021, 15(5): 835-845. DOI: 10.1007/s11571-021-09671-4.
[28]
WANG Y, SUN K, LIU Z, et al. Classification of Unmedicated Bipolar Disorder Using Whole-Brain Functional Activity and Connectivity: A Radiomics Analysis[J]. Cereb Cortex, 2020, 30(3): 1117-1128. DOI: 10.1093/cercor/bhz152.
[29]
SHI D, ZHANG H, WANG S, et al. Application of Functional Magnetic Resonance Imaging in the Diagnosis of Parkinson's Disease: A Histogram Analysis[J/OL]. Front Aging Neurosci, 2021, 13: 624731 [2023-06-02]. https://doi.org/10.3389/fnagi.2021.624731. DOI: 10.3389/fnagi.2021.624731.
[30]
CAO X, WANG X, XUE C, et al. A Radiomics Approach to Predicting Parkinson's Disease by Incorporating Whole-Brain Functional Activity and Gray Matter Structure[J/OL]. Front Neurosci, 2020, 14: 751 [2023-06-02]. https://doi.org/10.3389/fnins.2020.00751. DOI: 10.3389/fnins.2020.00751.
[31]
ZHANG X, CAO X, XUE C, et al. Aberrant functional connectivity and activity in Parkinson's disease and comorbidity with depression based on radiomic analysis[J/OL]. Brain Behav, 2021, 11(5): e2103 [2023-06-02]. https://doi.org/10.1002/brb3.2103. DOI: 10.1002/brb3.2103.
[32]
ZHANG Y, WU I W, BUCKLEY S, et al. Diffusion tensor imaging of the nigrostriatal fibers in Parkinson's disease[J]. Mov Disord, 2015, 30(9): 1229-1236. DOI: 10.1002/mds.26251.
[33]
TESSA C, GIANNELLI M, DELLA N R, et al. A whole-brain analysis in de novo Parkinson disease[J]. AJNR Am J Neuroradiol, 2008, 29(4): 674-680. DOI: 10.3174/ajnr.A0900.
[34]
GU H F, DAI H. Diagnostic value of texture analysis based on diffusion tensor imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 1-6. DOI: 10.12015/issn.1674-8034.2021.11.001.
[35]
LI J, LIU X, WANG X, et al. Diffusion Tensor Imaging Radiomics for Diagnosis of Parkinson's Disease[J/OL]. Brain Sci, 2022, 12(7): 851 [2023-06-02]. https://doi.org/10.3390/brainsci12070851. DOI: 10.3390/brainsci12070851.
[36]
PENG Y Y, REN C P, CHENG J L, et al. Texture analysis of autoregressive model on susceptibility weighted imaging of deep brain nucleuses for diagnosis of Parkinson disease[J]. Chin J Interv Imaging Ther, 2020, 17(12): 750-754. DOI: 10.13929/j.issn.1672-8475.2020.12.011.
[37]
REN Q, WANG Y, LENG S, et al. Substantia Nigra Radiomics Feature Extraction of Parkinson's Disease Based on Magnitude Images of Susceptibility-Weighted Imaging[J/OL]. Front Neurosci, 2021, 15: 646617 [2023-06-02]. https://doi.org/10.3389/fnins.2021.646617. DOI: 10.3389/fnins.2021.646617.
[38]
PANG H, YU Z, LI R, et al. MRI-Based Radiomics of Basal Nuclei in Differentiating Idiopathic Parkinson's Disease From Parkinsonian Variants of Multiple System Atrophy: A Susceptibility-Weighted Imaging Study[J/OL]. Front Aging Neurosci, 2020, 12: 587250 [2023-06-02]. https://doi.org/10.3389/fnagi.2020.587250. DOI: 10.3389/fnagi.2020.587250.
[39]
SIKIO M, HOLLI K K, HARRISON L C, et al. Parkinson's disease: interhemispheric textural differences in MR images[J]. Acad Radiol, 2011, 18(10): 1217-1224. DOI: 10.1016/j.acra.2011.06.007.
[40]
ZHANG Y, YANG M, WANG F, et al. Histogram Analysis of Quantitative Susceptibility Mapping for the Diagnosis of Parkinson's Disease[J]. Acad Radiol, 2022, 29Suppl 3: S71-S79. DOI: 10.1016/j.acra.2020.10.027.
[41]
KIM E Y, SUNG Y H, SHIN H G, et al. Diagnosis of Early-Stage Idiopathic Parkinson's Disease Using High-Resolution Quantitative Susceptibility Mapping Combined with Histogram Analysis in the Substantia Nigra at 3 T[J]. J Clin Neurol, 2018, 14(1): 90-97. DOI: 10.3988/jcn.2018.14.1.90.
[42]
LI G, ZHAI G, ZHAO X, et al. 3D texture analyses within the substantia nigra of Parkinson's disease patients on quantitative susceptibility maps and R2(*) maps[J]. Neuroimage, 2019, 188: 465-472. DOI: 10.1016/j.neuroimage.2018.12.041.
[43]
KANG J J, CHEN Y, BAO S L, et al. A Study on the Value of QSM Radiomics Based on Iron Deposition in Substantia Nigra in Diagnosis of Parkinson's Disease[J]. J Clin Radiol, 2022, 41(1): 6-11. DOI: 10.13437/j.cnki.jcr.2022.01.002.
[44]
CHENG Z, ZHANG J, HE N, et al. Radiomic Features of the Nigrosome-1 Region of the Substantia Nigra: Using Quantitative Susceptibility Mapping to Assist the Diagnosis of Idiopathic Parkinson's Disease[J/OL]. Front Aging Neurosci, 2019, 11: 167 [2023-06-02]. https://doi.org/10.3389/fnagi.2019.00167. DOI: 10.3389/fnagi.2019.00167.
[45]
XIAO B, HE N, WANG Q, et al. Quantitative susceptibility mapping based hybrid feature extraction for diagnosis of Parkinson's disease[J/OL]. Neuroimage Clin, 2019, 24: 102070 [2023-06-02]. https://doi.org/10.1016/j.nicl.2019.102070. DOI: 10.1016/j.nicl.2019.102070.
[46]
KANG J J, CHEN Y, XU G D, et al. Combining quantitative susceptibility mapping to radiomics in diagnosing Parkinson's disease and assessing cognitive impairment[J]. Eur Radiol, 2022, 32(10): 6992-7003. DOI: 10.1007/s00330-022-08790-8.
[47]
ZHAO W, YANG C, TONG R, et al. Relationship Between Iron Distribution in Deep Gray Matter Nuclei Measured by Quantitative Susceptibility Mapping and Motor Outcome After Deep Brain Stimulation in Patients With Parkinson's Disease[J/OL]. J Magn Reson Imaging, 2023 [2023-06-02]. https://doi.org/10.1002/jmri.28574. DOI: 10.1002/jmri.28574.
[48]
LIU Y, XIAO B, ZHANG C, et al. Predicting Motor Outcome of Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease Using Quantitative Susceptibility Mapping and Radiomics: A Pilot Study[J/OL]. Front Neurosci, 2021, 15: 731109 [2023-06-02]. https://doi.org/10.3389/fnins.2021.731109. DOI: 10.3389/fnins.2021.731109.
[49]
SHINDE S, PRASAD S, SABOO Y, et al. Predictive markers for Parkinson's disease using deep neural nets on neuromelanin sensitive MRI[J/OL]. Neuroimage Clin, 2019, 22: 101748 [2023-06-02]. https://doi.org/10.1016/j.nicl.2019.101748. DOI: 10.1016/j.nicl.2019.101748.
[50]
LI X J, XUE P Y, LV K X, et al. Value of imaging omics based on NM-MRI in the diagnosis of Parkinson's disease[J]. China Medicine and Pharmacy, 2022, 12(23): 160-163. DOI: 10.3969/j.issn.2095-0616.2022.23.041.
[51]
SHIIBA T, TAKANO K, TAKAKI A, et al. Dopamine transporter single-photon emission computed tomography-derived radiomics signature for detecting Parkinson's disease[J/OL]. EJNMMI Res, 2022, 12(1): 39 [2023-06-02]. https://doi.org/10.1186/s13550-022-00910-1. DOI: 10.1186/s13550-022-00910-1.
[52]
RAHMIM A, SALIMPOUR Y, JAIN S, et al. Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments[J/OL]. Neuroimage Clin, 2016, 12: e1-e9 [2023-06-02]. https://doi.org/10.1016/j.nicl.2016.02.012. DOI: 10.1016/j.nicl.2016.02.012.
[53]
SALMANPOUR M R, SHAMSAEI M, RAHMIM A. Feature selection and machine learning methods for optimal identification and prediction of subtypes in Parkinson's disease[J/OL]. Comput Methods Programs Biomed, 2021, 206: 106131 [2023-06-02]. https://doi.org/10.1016/j.cmpb.2021.106131. DOI: 10.1016/j.cmpb.2021.106131.
[54]
SUN X, GE J, LI L, et al. Use of deep learning-based radiomics to differentiate Parkinson's disease patients from normal controls: a study based on [(18)F]FDG PET imaging[J]. Eur Radiol, 2022, 32(11): 8008-8018. DOI: 10.1007/s00330-022-08799-z.
[55]
WU Y, JIANG J H, CHEN L, et al. Use of radiomic features and support vector machine to distinguish Parkinson's disease cases from normal controls[J/OL]. Ann Transl Med, 2019, 7(23): 773 [2023-06-02]. https://doi.org/10.21037/atm.2019.11.26. DOI: 10.21037/atm.2019.11.26.
[56]
HU X, SUN X, HU F, et al. Multivariate radiomics models based on (18)F-FDG hybrid PET/MRI for distinguishing between Parkinson's disease and multiple system atrophy[J]. Eur J Nucl Med Mol Imaging, 2021, 48(11): 3469-3481. DOI: 10.1007/s00259-021-05325-z.
[57]
BERG D. Ultrasound in the (premotor) diagnosis of Parkinson's disease[J]. Parkinsonism Relat Disord, 2007, 13Suppl 3: S429-S433. DOI: 10.1016/S1353-8020(08)70043-9.
[58]
SHI J, YAN M, DONG Y, et al. Multiple Kernel Learning Based Classification of Parkinson's Disease With Multi-Modal Transcranial Sonography[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 61-64. DOI: 10.1109/EMBC.2018.8512194.

PREV MRI diagnosis of endometriosis in front of the urethra: One case report
NEXT Research progress of magnetic resonance 3D-T1 weighted imaging and diffusion tensor imaging in tremor-dominant Parkinson,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn