Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging in diagnosis of thyroid nodules
WANG Yiwen  ZHOU Zhe  SUN Zhanguo 

WANG Y W, ZHOU Z, SUN Z G. Research progress of magnetic resonance imaging in diagnosis of thyroid nodules[J]. Chin J Magn Reson Imaging, 2023, 14(8): 150-153, 181. DOI:10.12015/issn.1674-8034.2023.08.026.


[Abstract] Thyroid nodules are common clinical lesions, and the detection rate is increasing year by year, which malignant nodules account for about 7%-15%. Early accurate non-invasive imaging evaluation is crucial to the formulation of clinical treatment plans. Magnetic resonance imaging (MRI) has been gradually used for the identification of benign and malignant thyroid nodules, cervical lymph node metastasis, and evaluation of tissue invasion around thyroid cancer due to its high resolution and radiation-free. In addition to conventional plain and enhanced MRI scans, the unique roles and advantages of functional sequences such as dynamic contrast-enhanced MRI, intravoxel incoherent motion diffusion-weighted imaging, diffusion kurtosis imaging and amide proton transfer weighted imaging in thyroid nodules have been gradually recognized. And it also faces many challenges. We reviewed the application of MRI sequences and imaging techniques in the diagnosis of thyroid nodules in this paper, focusing on the research progress of functional MRI in thyroid nodules, in order to provide new ideas and directions for promoting the quality of thyroid magnetic resonance images and further quantitative and qualitative diagnosis of thyroid nodules through multimodal MRI sequences.
[Keywords] thyroid cancer;papillary thyroid carcinoma;magnetic resonance imaging;dynamic contrast-enhanced magnetic resonance imaging;intravoxel incoherent motion;diffusion kurtosis imaging;T2* mapping

WANG Yiwen1   ZHOU Zhe2   SUN Zhanguo2*  

1 Clinical Medical School, Jining Medical University, Jining 272000, China

2 Department of Imaging, Affiliated Hospital of Jining Medical University, Jining 272000, China

Corresponding author: Sun ZG, E-mail: yingxiangszg@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Jining Key Research and Development Project (No. 2022YXNS076); High Level Scientific Research Project Cultivation Plan of Jining Medical University (No. JYGC2022FKJ010).
Received  2023-01-26
Accepted  2023-06-26
DOI: 10.12015/issn.1674-8034.2023.08.026
WANG Y W, ZHOU Z, SUN Z G. Research progress of magnetic resonance imaging in diagnosis of thyroid nodules[J]. Chin J Magn Reson Imaging, 2023, 14(8): 150-153, 181. DOI:10.12015/issn.1674-8034.2023.08.026.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Medical Administration Bureau of National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of thyroid cancer (2022 edition)[J]. Chin J Pract Surg, 2022, 42(12): 1343-1357+1363. DOI: 10.19538/j.cjps.issn1005-2208.2022.12.02.
[3]
XIE Y S, WU M N, HE P, et al. The imaging diagnosis and differential diagnosis of thyroid carcinoma and metastatic lymph nodes[J]. Chin J Radiol, 2022, 56(6)715-718. DOI: 10.3760/cma.j.cn112149-20220322-00263
[4]
JUNN J C, SODERLUND K A, GLASTONBURY C M. Imaging of head and neck cancer with CT, MRI, and US[J]. Semin Nucl Med, 2021, 51(1): 3-12. DOI: 10.1053/j.semnuclmed.2020.07.005.
[5]
WANG H, LIU K F, REN J L, et al. Magnetic resonance imaging characteristics of papillary thyroid carcinoma for the prediction of cervical central compartment lymph node metastasis[J]. J Comput Assist Tomogr, 2019, 43(6): 963-969. DOI: 10.1097/RCT.0000000000000883.
[6]
KANG T, KIM D W, LEE Y J, et al. Magnetic resonance imaging features of normal thyroid parenchyma and incidental diffuse thyroid disease: a single-center study[J/OL]. Front Endocrinol, 2018, 9: 746 [2023-01-25]. https://www.frontiersin.org/articles/10.3389/fendo.2018.00746/full. DOI: 10.3389/fendo.2018.00746.
[7]
SHAO X H, ZHANG J S, ZHANG H W, et al. Differential diagnosis value of CT and MRI for the nature of thyroidnodular[J]. Chin J CT MRI, 2021, 19(11): 32-34. DOI: 10.3969/j.issn.1672-5131.2021.11.011
[8]
WANG H, WEI R, LIU W Y, et al. Diagnostic efficacy of multiple MRI parameters in differentiating benign vs. malignant thyroid nodules[J].BMC Med Imaging, 2018, 18(1): 1-9. DOI: 10.1186/s12880-018-0294-0.
[9]
XIE Y S, WANG S X, ZHANG M R, et al. The value of preoperative multi-parametric MR features using surface coil exclusive designed for thyroid gland in predicting the metastatic status of regional lymph nodes in thyroid cancer[J]. Chin J Magn Reson Imaging, 2021, 12(4):17-22. DOI: 10.12015/issn.1674-8034.2021.04.004.
[10]
SONG C R, CHENG P, CHENG J L, et al. Differential diagnosis of nasopharyngeal carcinoma and nasopharyngeal lymphoma based on DCE-MRI and RESOLVE-DWI[J]. Eur Radiol, 2020, 30(1): 110-118. DOI: 10.1007/s00330-019-06343-0.
[11]
WU M N, LIANG L F, ZHANG M R, et al. Value of multi-parameter MRI in the diagnosis of thyroid benign and malignant nodules[J]. Chin J Radiol, 2021, 55(7): 710-715. DOI: 10.3760/cma.j.cn112149-20200822-01022
[12]
CHEN J, JIANG L L, LIU D H, et al. The value of dynamic contrast enhanced? magnetic resonance imaging based on compressed sensing volumetric interpolated breath-hold examination in the differential diagnosis between benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2022, 13(4): 38-42. DOI: 10.12015/issn.1674-8034.2022.04.007
[13]
PAUDYAL R, LU Y G, HATZOGLOU V, et al. Dynamic contrast-enhanced MRI model selection for predicting tumor aggressiveness in papillary thyroid cancers[J/OL]. NMR Biomed, 2020, 33(1) [2023-01-26]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4166. DOI: 10.1002/nbm.4166.
[14]
WANG Q J, GUO Y, ZHANG J, et al. Diagnostic value of high b-value (2000 s/mm2) DWI for thyroid micronodules[J/OL]. Medicine, 2019, 98(10): e14298 [2023-01-26]. https://journals.lww.com/md-journal/Fulltext/2019/03080/Diagnostic_value_of_high_b_value__2000_s_mm2__DWI.2.aspx. DOI: 10.1097/md.0000000000014298.
[15]
SONG M H, YUE Y L, JIN Y F, et al. Intravoxel incoherent motion and ADC measurements for differentiating benign from malignant thyroid nodules: utilizing the most repeatable region of interest delineation at 3.0 T[J/OL]. Cancer Imaging, 2020, 20(1): 9 [2023-01-26]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-020-0289-2. DOI: 10.1186/s40644-020-0289-2.
[16]
KONG W D, YUE X H, REN J L, et al. A comparative analysis of diffusion-weighted imaging and ultrasound in thyroid nodules[J/OL]. BMC Med Imaging, 2019, 19(1): 92 [2023-01-26]. https://pubmed.ncbi.nlm.nih.gov/31752728/. DOI: 10.1186/s12880-019-0381-x.
[17]
TAN H, CHEN J, ZHAO Y L, et al. Feasibility of intravoxel incoherent motion for differentiating benign and malignant thyroid nodules[J]. Acad Radiol, 2019, 26(2): 147-153. DOI: 10.1016/j.acra.2018.05.011.
[18]
ZHANG H, HU S D, WANG X, et al. Using diffusion-weighted MRI to predict central lymph node metastasis in papillary thyroid carcinoma: a feasibility study[J/OL]. Front Endocrinol, 2020, 11: 326 [2023-01-26]. https://www.frontiersin.org/articles/10.3389/fendo.2020.00326/full. DOI: 10.3389/fendo.2020.00326.
[19]
SONG B, WANG H, CHEN Y Q, et al. Efficacy of apparent diffusion coefficient in predicting aggressive histological features of papillary thyroid carcinoma[J]. Diagn Interv Radiol, 2018, 24(6): 348-356. DOI: 10.5152/dir.2018.18130.
[20]
IQBAL M A, WANG X, GUOLIANG G L, et al. A comparison of the efficiency of diagnostic ultrasound and magnetic resonance imaging of cervical lymph nodes in papillary thyroid carcinoma[J]. J Xray Sci Technol, 2021, 29(6): 1033-1044. DOI: 10.3233/XST-210927.
[21]
FU X, ZHANG Q, LU S Y, et al. The value of whole-lesion intravoxel incoherent motion diffusion weighted imaging based on turbo spin-echo sequence in differential diagnosis of thyroid benign and malignant nodules[J]. Chin J Radiol, 2020, 54(10): 954-958. DOI: 10.3760/cma.j.cn112149-20191018-00850
[22]
SONG M H, YUE Y L, GUO J S, et al. Quantitative analyses of the correlation between dynamic contrast-enhanced MRI and intravoxel incoherent motion DWI in thyroid nodules[J]. Am J Transl Res, 2020, 12(7): 3984-3992.
[23]
JIANG L L, CHEN J, HUANG H P, et al. Comparison of the differential diagnostic performance of intravoxel incoherent motion imaging and diffusion kurtosis imaging in malignant and benign thyroid nodules[J/OL].Front Oncol, 2022, 12: 895972 [2023-01-26]. https://doi.org/10.3389/fonc.2022.895972. DOI: 10.3389/fonc.2022.895972.
[24]
ZHU X, WANG J, WANG Y C, et al. Quantitative differentiation of malignant and benign thyroid nodules with multi-parameter diffusion-weighted imaging[J]. World J Clin Cases, 2022, 10(24): 8587-8598. DOI: 10.12998/wjcc.v10.i24.8587.
[25]
SONG M H, JIN Y F, GUO J S, et al. Application of whole-lesion intravoxel incoherent motion analysis using iZOOM DWI to differentiate malignant from benign thyroid nodules[J]. Acta Radiol, 2019, 60(9): 1127-1134. DOI: 10.1177/0284185118813599.
[26]
NÚÑEZ D A, LU Y G, PAUDYAL R, et al. Quantitative non-Gaussian intravoxel incoherent motion diffusion-weighted imaging metrics and surgical pathology for stratifying tumor aggressiveness in papillary thyroid carcinomas[J]. Tomography, 2019, 5(1: 26-35. DOI: 10.18383/j.tom.2018.00054.
[27]
CAO L K, CHEN J, DUAN T, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade[J]. Quant Imaging Med Surg, 2019, 9(4: 590-602. DOI: 10.21037/qims.2019.02.14.
[28]
SHI R Y, YAO Q Y, ZHOU Q Y, et al. Preliminary study of diffusion kurtosis imaging in thyroid nodules and its histopathologic correlation[J]. Eur Radiol, 2017, 27(11: 4710-4720. DOI: 10.1007/s00330-017-4874-0.
[29]
LIN L, XUE Y, DUAN Q, et al. Grading meningiomas using mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging[J/OL]. Clin Radiol, 2019, 74(8: 651.e15-651.e23 [2023-01-26]. https://www.clinicalradiologyonline.net/article/S0009-9260(19)30194-1/fulltext. DOI: 10.1016/j.crad.2019.04.007.
[30]
LIU C L, WANG K, LI X D, et al. Breast lesion characterization using whole-lesion histogram analysis with stretched-exponential diffusion model[J]. J Magn Reson Imaging, 2018, 47(6: 1701-1710. DOI: 10.1002/jmri.25904.
[31]
SEO N, CHUNG Y E, PARK Y N, et al. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(7: 2812-2822. DOI: 10.1007/s00330-017-5292-z.
[32]
JIANG L L, ZHANG J B, CHEN J, et al. rFOV-DWI and SMS-RESLOVE-DWI in patients with thyroid nodules: comparison of image quality and apparent diffusion coefficient measurements[J/OL]. Magn Reson Imaging, 2022, 91: 62-68 [2023-01-26]. https://pubmed.ncbi.nlm.nih.gov/35643334/. DOI: 10.1016/j.mri.2022.05.010.
[33]
LIU W G, LIU H, XIE S M, et al. Comparing the clinical utility of single-shot, readout-segmented and zoomit echo-planar imaging in diffusion-weighted imaging of the kidney at 3T[J/OL]. Sci Rep, 2022, 12: 12389 [2023-01-26]. https://www.nature.com/articles/s41598-022-16670-w. DOI: 10.1038/s41598-022-16670-w.
[34]
LIU R J, JIANG G H, GAO P, et al. Non-invasive amide proton transfer imaging and ZOOM diffusion-weighted imaging in differentiating benign and malignant thyroid micronodules[J/OL]. Front Endocrinol, 2018, 9: 747 [2023-01-26]. https://www.frontiersin.org/articles/10.3389/fendo.2018.00747/full. DOI: 10.3389/fendo.2018.00747.
[35]
LUO X, HE Y S, QI X, et al. Role of T 2* mapping and ZOOMit IVIM in differentiating benign and malignant thyroid nodules[J]. Chin J Radiol, 2021, 55(7: 729-733. DOI: 10.3760/cma.j.cn112149-20200617-00827.
[36]
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2: 347-364. DOI: 10.1002/jmri.26645.
[37]
LI G M, JIANG G H, MEI Y J, et al. Applying amide proton transfer-weighted imaging (APTWI) to distinguish papillary thyroid carcinomas and predominantly solid adenomatous nodules: comparison with diffusion-weighted imaging[J/OL]. Front Oncol, 2020, 10: 918 [2023-01-26]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2020.00918/full. DOI: 10.3389/fonc.2020.00918.
[38]
GUPTA A, HOUSTON B. Cardiac 1H MR spectroscopy: development of the past five decades and future perspectives[J]. Heart Fail Rev, 2021, 26(4: 839-859. DOI: 10.1007/s10741-020-10059-5.
[39]
JULIÀ-SAPÉ M, CANDIOTA A, ARÚS C. Cancer metabolism in a snapshot: MRS(I)[J/OL]. NMR Biomed, 2019, 32(10: e4054 [2023-01-26]. https://doi.org/10.1002/nbm.4054. DOI: 10.1002/nbm.4054.
[40]
NATASA P B, OLIVERA S, DUSKO K, et al. Is elevated choline on magnetic resonance spectroscopy a reliable marker of breast lesion malignancy?[J/OL]. Front Oncol, 2021, 11: 610354 [2023-01-26]. https://doi.org/10.3389/fonc.2021.610354. DOI: 10.3389/fonc.2021.610354.
[41]
AGHAGHAZVINI L, PIROUZI P, SHARIFIAN H, et al. 3T magnetic resonance spectroscopy as a powerful diagnostic modality for assessment of thyroid nodules[J]. Arch Endocrinol Metab, 2018, 62(5: 501-505. DOI: 10.20945/2359-3997000000069.
[42]
NODA Y, KANEMATSU M, GOSHIMA S, et al. MRI of the thyroid for differential diagnosis of benign thyroid nodules and papillary carcinomas[J/OL]. AJR Am J Roentgenol, 2015, 204(3: W332-W335 [2023-01-26]. https://pubmed.ncbi.nlm.nih.gov/25714319/. DOI: 10.2214/AJR.14.13344.
[43]
MINUTO M N, SHINTU L, CALDARELLI S. Proteomics, and metabolomics: magnetic resonance spectroscopy for the presurgical screening of thyroid nodules[J]. Curr Genomics, 2014, 15(3: 178-183. DOI: 10.2174/1389202915999140404100701.
[44]
TAO H Y, QIAO Y, HU Y W, et al. Quantitative T2-mapping and T2 -mapping evaluation of changes in cartilage matrix after acute anterior cruciate ligament rupture and the correlation between the results of both methods[J/OL]. Biomed Res Int, 2018, 2018: 1-8 5 [2023-01-26]. https://www.hindawi.com/journals/bmri/2018/7985672/. DOI: 10.1155/2018/7985672.
[45]
TRIADYAKSA P, OUDKERK M, SIJENS P E. Cardiac T2 * mapping: techniques and clinical applications[J]. J Magn Reson Imaging, 2020, 52(5: 1340-1351. DOI: 10.1002/jmri.27023.
[46]
SHI R Y, YAO Q Y, WU L M, et al. T2* mapping at 3.0T MRI for differentiation of papillary thyroid carcinoma from benign thyroid nodules[J]. J Magn Reson Imaging, 2016, 43(4: 956-961. DOI: 10.1002/jmri.25041.
[47]
FANG X L, SU D K, JIN G Q, et al. Value of susceptibility weighted imaging in differential diagnosis of benign and maliagnant thyroid lesions[J]. J Pract Radiol, 2016, 32(10): 1513-1516. DOI: 10.3969/j.issn.1002-1671.2016.10.007.

PREV Application status and progress of magnetic resonance imaging in thyroid cancer
NEXT Advances in MRI application of artificial intelligence in hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn