Share:
Share this content in WeChat
X
Review
Application progress of diffusion-weighted imaging basded on mono-exponential and intravoxel incoherent motion imaging in autoimmune diseases
TIAN Manting  DING Changwei 

TIAN M T, DING C W. Application progress of diffusion-weighted imaging basded on mono-exponential and intravoxel incoherent motion imaging in autoimmune diseases[J]. Chin J Magn Reson Imaging, 2023, 14(8): 158-164. DOI:10.12015/issn.1674-8034.2023.08.028.


[Abstract] Diffusion weighted imaging (DWI) is a non-invasive method to detect the micro movement of water molecules in human body. Apparent diffusion coefficient (ADC) of mono-exponential DWI can be used for quantitative evaluation of the direction and degree of restriction in the diffusion motion of water molecules, which indirectly reflected the changes and characteristics of microstructure in the organization. However, the result is a superposition of both pure water molecules and perfusion-related diffusion. Bi-exponential DWI, also called intravoxel incoherent motion (IVIM) imaging is based on mono-exponential DWI, a kind of multi-b DWI, which can distinguish the diffusion of pure water molecules and perfusion-related diffusion precisely. Due to their high sensitivity to microstructure changes, mono-exponential DWI and IVIM imaging have important application value in diagnosis of disease, evaluation of disease activity and prognosis, providing effective imaging evidence for clinical, therefore conventional DWI and IVIM imaging are being used more and more widely in autoimmune diseases. The author reviewed the application progress of mono-exponential DWI and IVIM imaging in autoimmune encephalitis, autoimmune hepatitis, autoimmune pancreatitis, ankylosing spondylitis, immune nephropathy and Takayasu arteritis, aimed to elaborate the current situation and progress of their application in autoimmune diseases and further explore the prospects and shortcomings of their extensive application in autoimmune diseases.
[Keywords] autoimmune diseases;magnetic resonance imaging;diffusion weighted imaging;intravoxel incoherent motion imaging

TIAN Manting   DING Changwei*  

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

Corresponding author: Ding CW, E-mail: 18940254003@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Liaoning Province (No. 20170541045).
Received  2022-10-24
Accepted  2023-06-15
DOI: 10.12015/issn.1674-8034.2023.08.028
TIAN M T, DING C W. Application progress of diffusion-weighted imaging basded on mono-exponential and intravoxel incoherent motion imaging in autoimmune diseases[J]. Chin J Magn Reson Imaging, 2023, 14(8): 158-164. DOI:10.12015/issn.1674-8034.2023.08.028.

[1]
CHAVHAN G B, ALSABBAN Z, BABYN P S. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications[J]. Radiographics, 2014, 34(3): E73-E88. https://doi.org/10.1148/rg.343135047. DOI: 10.1148/rg.343135047.
[2]
LIANG C, CHU E, KUOY E, et al. Autoimmune-mediated encephalitis and mimics: A neuroimaging review[J]. J Neuroimaging, 2023, 33(1): 19-34. DOI: 10.1111/jon.13060.
[3]
CO D O, KWON J M. Autoimmune Encephalitis: Distinguishing Features and Specific Therapies[J]. Crit Care Clin, 2022, 38(2): 393-412. DOI: 10.1016/j.ccc.2021.11.007.
[4]
RICHIE M B. Autoimmune Meningitis and Encephalitis[J]. Neurol Clin, 2022, 40(1): 93-112. DOI: 10.1016/j.ncl.2021.08.007.
[5]
PEERY H E, DAY G S, DUNN S, et al. Anti-NMDA receptor encephalitis. The disorder, the diagnosis and the immunobiology[J]. Autoimmun Rev, 2012, 11(12): 863-872. DOI: 10.1016/j.autrev.2012.03.001.
[6]
Chinese Society of Neuroinfectious Diseases and Cerebrospinal Fluid Cytology. Chinese expert consensus on the diagnosis and management of autoimmune encephalitis (2022 edition)[J]. Chin J Neurol, 2022, 55(9): 931-949. DOI: 10.3760/cma.j.cn113694-20220219-00118.
[7]
SON D K, CHO S M, RYU H U, et al. Anti-NMDAR encephalitis with bilateral basal ganglia MRI lesions at a distance of time: a case report[J]. BMC Neurol, 2022, 22(1): 121. DOI: 10.1186/s12883-022-02652-y.
[8]
ARMANGUE T, LEYPOLDT F, DALMAU J. Autoimmune encephalitis as differential diagnosis of infectious encephalitis[J]. Curr Opin Neurol, 2014, 27(3): 361-368. DOI: 10.1097/WCO.0000000000000087.
[9]
ELLUL M, SOLOMON T. Acute encephalitis-diagnosis and management[J]. Clin Med (Lond), 2018, 18(2): 155-159. DOI: 10.7861/clinmedicine.18-2-155.
[10]
ZHANG X M, SU Q, LI L L, et al. Application value of functional magnetic resonance in early diagnosing autoimmune encephalitis in and evaluating the prognosis in children[J]. Chin J Magn Reson Imaging, 2021, 12(11): 57-60, 65. DOI: 10.12015/issn.1674-8034.2021.11.012.
[11]
MIELI-VERGANI G, VERGANI D, CZAJA A J, et al. Autoimmune hepatitis[J]. Nat Rev Dis Primers, 2018, 4: 18017. DOI: 10.1038/nrdp.2018.17.
[12]
DILLMAN J R, SERAI S D, TROUT A T, et al. Diagnostic performance of quantitative magnetic resonance imaging biomarkers for predicting portal hypertension in children and young adults with autoimmune liver disease[J]. Pediatr Radiol, 2019, 49(3): 332-341. DOI: 10.1007/s00247-018-4319-1.
[13]
SIRBE C, SIMU G, SZABO I, et al. Pathogenesis of Autoimmune Hepatitis-Cellular and Molecular Mechanisms[J]. Int J Mol Sci, 2021, 22(24): 13578. DOI: 10.3390/ijms222413578.
[14]
MENG Z A, PENG L R, ZHANG K. Magnetic resonance imaging in the diagnosis of autoimmune hepatitis[J]. Chinese Journal of Medical Physics, 2017, 34(8): 816-819. DOI: 10.3969/j.issn.1005-202X.2017.08.012.
[15]
JANG W, JO S, SONG J S, et al. Comparison of diffusion-weighted imaging and MR elastography in staging liver fibrosis: a meta-analysis[J]. Abdom Radiol (NY), 2021, 46(8): 3889-3907. DOI: 10.1007/s00261-021-03055-2.
[16]
ABU ATA N, DILLMAN J R, GANDHI D B, et al. Association between liver diffusion-weighted imaging apparent diffusion coefficient values and other measures of liver disease in pediatric autoimmune liver disease patients[J]. Abdom Radiol (NY), 2021, 46(1): 197-204. DOI: 10.1007/s00261-020-02595-3.
[17]
ZHU X L, FAN N J, XING Y, et al. Imaging manifestations and etiology of confluent hepatic fibrosis[J]. Radiol Practice, 2021, 36(12): 1553-1557. DOI: 10.13609/j.cnki.1000-0313.2021.12.018.
[18]
PARK Y S, LEE C H, KIM B H, et al. Using Gd-EOB-DTPA-enhanced 3-T MRI for the differentiation of infiltrative hepatocellular carcinoma and focal confluent fibrosis in liver cirrhosis[J]. Magn Reson Imaging, 2013, 31(7): 1137-1142. DOI: 10.1016/j.mri.2013.01.011.
[19]
WANG L P, PEI C X, LIU Z, et al. Evaluation of liver fibrosis in rats by magnetic resonanceintravoxel incoherence imaging[J]. Chin J Magn Reson Imaging, 2019, 10(5): 371-376. DOI: 10.12015/issn.1674-8034.2019.05.011.
[20]
ZHANG J, GUO Y, TAN X, et al. MRI-based estimation of liver function by intravoxel incoherent motion diffusion-weighted imaging[J]. Magn Reson Imaging, 2016, 34(8): 1220-1225. DOI: 10.1016/j.mri.2016.05.013.
[21]
FRANÇA M, MARTÍ-BONMATÍ L, ALBERICH-BAYARRI Á, et al. Evaluation of fibrosis and inflammation in diffuse liver diseases using intravoxel incoherent motion diffusion-weighted MR imaging[J]. Abdom Radiol (NY), 2017, 42(2): 468-477. DOI: 10.1007/s00261-016-0899-0.
[22]
CHUNG S R, LEE S S, KIM N, et al. Intravoxel incoherent motion MRI for liver fibrosis assessment: a pilot study[J]. Acta Radiol, 2015, 56(12): 1428-1436. DOI: 10.1177/0284185114559763.
[23]
ZHANG Y, JIN N, DENG J, et al. Intra-voxel incoherent motion MRI in rodent model ofdiethylnitrosamine-induced liver fibrosis[J]. Magn Reson Imaging, 2013, 31(6): 1017-1021. DOI: 10.1016/j.mri.2013.03.007.
[24]
KHANDELWAL A, INOUE D, TAKAHASHI N. Autoimmune pancreatitis: an update[J]. AbdomRadiol (NY), 2020, 45(5): 1359-1370. DOI: 10.1007/s00261-019-02275-x.
[25]
CHOI S Y, KIM S H, KANG T W, et al. Differentiating Mass-Forming Autoimmune Pancreatitis From Pancreatic Ductal Adenocarcinoma on the Basis of Contrast-Enhanced MRI andDWI Findings[J]. AJR Am J Roentgenol, 2016, 206(2): 291-300. DOI: 10.2214/AJR.15.14974.
[26]
CHOUHAN M D, FIRMIN L, READ S, et al. Quantitative pancreatic MRI: a pathology-based review[J]. Br J Radiol, 2019, 92(1099): 20180941. DOI: 10.1259/bjr.20180941.
[27]
SEKITO T, ISHII Y, SERIKAWA M, et al. The role of apparent diffusion coefficient value in the diagnosis of localized type 1 autoimmune pancreatitis: differentiation from pancreaticductal adenocarcinoma and evaluation of response to steroids[J]. Abdom Radiol (NY), 2021, 46(5): 2014-2024. DOI: 10.1007/s00261-020-02907-7.
[28]
HA J, CHOI S H, KIM K W, et al. MRI features for differentiation of autoimmune pancreatitis from pancreatic ductal adenocarcinoma: A systematic review and meta-analysis[J]. Dig Liver Dis, 2022, 54(7): 849-856. DOI: 10.1016/j.dld.2021.11.013.
[29]
ZHANG T T, WANG L, LIU H H, et al. Differentiation of pancreatic carcinoma and mass-forming focal pancreatitis: qualitative and quantitative assessment by dynamic contrast-enhanced MRI combined with diffusion-weighted imaging[J]. Oncotarget, 2017, 8(1): 1744-1759. DOI: 10.18632/oncotarget.12120.
[30]
RUAN Z, JIAO J, MIN D, et al. Multi-modality imaging features distinguish pancreatic carcinoma from mass-forming chronic pancreatitis of the pancreatic head[J]. Oncol Lett, 2018, 15(6): 9735-9744. DOI: 10.3892/ol.2018.8545.
[31]
SCHIMA W, BÖHM G, RÖSCH C S, et al. Mass-forming pancreatitis versus pancreatic ductal adenocarcinoma: CT and MR imaging for differentiation[J]. Cancer Imaging, 2020, 20(1): 52. DOI: 10.1186/s40644-020-00324-z.
[32]
ZHU L, ZHANG W, JIN Z, et al. DWI of Autoimmune Pancreatitis: Is It an Imaging Biomarker for Disease Activity[J]. AJR Am J Roentgenol, 2021, 216(5): 1240-1246. DOI: 10.2214/AJR.20.23368.
[33]
KLAUß M, MAIER-HEIN K, TJADEN C, et al. IVIM DW-MRI of autoimmune pancreatitis: therapy monitoring and differentiation from pancreatic cancer[J]. Eur Radiol, 2016, 26(7): 2099-2106. DOI: 10.1007/s00330-015-4041-4.
[34]
NAVARRO-COMPÁN V, SEPRIANO A, EL-ZORKANY B, et al. Axial spondyloarthritis[J]. Ann Rheum Dis, 2021, 80(12): 1511-1521. DOI: 10.1136/annrheumdis-2021-221035.
[35]
ZHANG P, YU K, GUO R, et al. Ankylosing spondylitis: correlations between clinical and MRI indices of sacroiliitis activity[J]. Clin Radiol, 2015, 70(1): 62-66. DOI: 10.1016/j.crad.2014.09.015.
[36]
CUI Y Q, YU Y M, YANG X M, et al. The value of DWI in evaluation of ankylosing spondylitis activity[J]. Journal of Medical Imaging, 2018, 28(10): 1731-1735.
[37]
REN C, ZHU Q, YUAN H. Mono-exponential and bi-exponential model-based diffusion-weighted MR imaging and IDEAL-IQ sequence for quantitative evaluation of sacroiliitis inpatients with ankylosing spondylitis[J]. Clin Rheumatol, 2018, 37(11): 3069-3076. DOI: 10.1007/s10067-018-4321-x.
[38]
WANG D, YIN H, LIU W, et al. Comparative analysis of the diagnostic values of T2 mapping and diffusion-weighted imaging for sacroiliitis in ankylosing spondylitis[J]. Skeletal Radiol, 2020, 49(10): 1597-1606. DOI: 10.1007/s00256-020-03442-8.
[39]
LEE K H, CHUNG H Y, XU X, et al. Apparent Diffusion Coefficient as an Imaging Biomarker for Spinal Disease Activity in Axial Spondyloarthritis[J]. Radiology, 2019, 291(1): 121-128. DOI: 10.1148/radiol.2019180960.
[40]
GUO X L, QIAN L X, WANG S Y. The diagnostic value of intravoxel incoherent motion and diffusion kurtosis imaging quantitative parameters for active sacroiliitis with ankylosing spondylitis[J]. Journal of Medical Imaging, 2022, 32(12): 2145-2149.
[41]
HU Z B, ZHANG X D, FAN W, et al. Comparative Study between IntravoxelIncoherent Motion Diffusion-Weighted Imaging and Fat Quantification in Assessment of the Activity of Ankylosing Spondylitis[J]. J Clin Radiol, 2020, 39(7): 1373-1378. DOI: 10.13437/j.cnki.jcr.2020.07.028.
[42]
LIU H, ZHOU Z, LI X, et al. Diffusion-weighted imaging for staging chronic kidney disease: a meta-analysis[J]. Br J Radiol, 2018, 91(1091): 20170952. DOI: 10.1259/bjr.20170952.
[43]
DESHPANDE V, ZEN Y, CHAN J K, et al. Consensus statement on the pathology of IgG4-related disease[J]. Mod Pathol, 2012, 25(9): 1181-1192. DOI: 10.1038/modpathol.
[44]
KIM B, KIM J H, BYUN J H, et al. IgG4-related kidney disease: MRI findings with emphasis on the usefulness of diffusion-weighted imaging[J]. Eur J Radiol, 2014, 83(7): 1057-1062. DOI: 10.1016/j.ejrad.2014.03.033.
[45]
VUJASINOVIC M, POZZI MUCELLI R M, VALENTE R, et al. Kidney Involvement in Patients with Type 1 Autoimmune Pancreatitis[J]. Clin Med, 2019, 8(2): 258. DOI: 10.3390/jcm8020258.
[46]
POZDZIK A A, MATOS C, RORIVE S, et al. Diffusion-weighted magnetic resonance imaging as a new diagnostic tool of subclinical IgG4-related acute tubulointerstitial nephritis[J]. Clin Kidney J, 2013, 6(2): 235-237. DOI: 10.1093/ckj/sft005.
[47]
XIN Z H, GUO S L, ZHOU H Q, et al. The Evaluation of Renal Function in Primary Glomerulonephritis with MR Apparent Diffusion Coefficient[J]. Pract Radiol, 2008(11): 1512-1515.
[48]
SU Y, YANG L P, HUANG X, et al. Assessment of the diffusion-weighted imaging for the pathology and renal function in lgA Nephropathy[J]. Tianjin Med J, 2016, 44(7): 873-876, 932. DOI: 10.11958/20150263.
[49]
JIANG X Y, XING C H, CHEN H W, et al. Evaluation of Intravoxel Incoherent Motion Derived Parameters in Differentiating Renal Cortex and Medulla of Pediatric Patient with Henoch-Schonlein Purpura Nephritis[J]. J Clin Radiol, 2017, 36(9): 1316-1320. DOI: 10.13437/j.cnki.jcr.2017.09.029.
[50]
ESATOGLU S N, HATEMI G. Takayasu arteritis[J]. Curr Opin Rheumatol, 2022, 34(1): 18-24. DOI: 10.1097/BOR.0000000000000852.
[51]
KUROIWA Y, TAI H, YAMASHITA A, et al. High Signal Intensity in Arterial Walls on Diffusion-Weighted Magnetic Resonance Imaging in the Active Phase of Takayasu Arteritis[J]. Circ J, 2017, 81(11): 1747-1748. DOI: 10.1253/circj.CJ-17-0079.
[52]
DOI S, KUROIWA Y, KUSUMOTO K, et al. Therapeutic response of immunoglobulin 4-related aortitis and pancreatitis demonstrated by diffusion-weighted MRI[J]. Radiol Case Rep, 2019, 14(9): 1132-1135. DOI: 10.1016/j.radcr.2019.06.020.

PREV Advances in MRI application of artificial intelligence in hepatocellular carcinoma
NEXT Advances in imaging differential diagnosis of autoimmune pancreatitis and pancreatic cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn