Share:
Share this content in WeChat
X
Review
Basic principle of time-dependent diffusion MRI and its application in prostate cancer
XU Ting  LIU Xiaowen  PENG Yongjia  CHEN Yaxi  GONG Jingshan 

XU T, LIU X W, PENG Y J, et al. Basic principle of time-dependent diffusion MRI and its application in prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(8): 171-175. DOI:10.12015/issn.1674-8034.2023.08.030.


[Abstract] Prostate cancer (PCa) is a kind of tumor with high morbidity, mortality and heterogeneity, which seriously affects the health of elderly men and brings social problems of overdiagnosis and excessive treatment. MRI is the preferred imaging method for the diagnosis, guidance of biopsy and monitoring of prostate diseases. Conventional diffusion-weighted imaging can not obtain the characteristics of cellular scale diffusion of water molecules caused by clinical significant PCa microstructure changes, which has some limitations in the diagnosis of PCa. However, time-dependent diffusion MRI (TDD-MRI) using oscillating gradient spin-echo (OGSE) can obtain the characteristics of cell-scale diffusion of water molecules to reflect the microstructure of prostate nodules in vivo, which shows the potential to be a non-invasive and easily available imaging biomarker for the diagnosis and risk stratification of PCa, and to provide decision making support for personalized therapy of PCa. This paper mainly introduces the basic principle of TDD-MRI and its application in PCa, and discusses whether TDD-MRI can be used as a non-invasive and easily obtained imaging biomarker in vivo for the diagnosis and risk stratification of PCa, so as to provide decision support for personalized medical treatment of clinical PCa.
[Keywords] prostate cancer;diffusion-weighted imaging;time-dependent diffusion magnetic resonance imaging;oscillating gradient spin-echo;precision medicine;magnetic resonance imaging

XU Ting1   LIU Xiaowen1   PENG Yongjia1   CHEN Yaxi1   GONG Jingshan2*  

1 The Second Clinical Medical College of Jinan University, Shenzhen 518020, China

2 Department of Radiology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China

Corresponding author: Gong JS, E-mail: jshgong@sina.com

Conflicts of interest   None.

Received  2022-08-15
Accepted  2023-06-25
DOI: 10.12015/issn.1674-8034.2023.08.030
XU T, LIU X W, PENG Y J, et al. Basic principle of time-dependent diffusion MRI and its application in prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(8): 171-175. DOI:10.12015/issn.1674-8034.2023.08.030.

[1]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[2]
HOEKS C M A, BARENTSZ J O, HAMBROCK T, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging[J]. Radiology, 2011, 261(1): 46-66. DOI: 10.1148/radiol.11091822.
[3]
MURPHY G, HAIDER M, GHAI S, et al. The expanding role of MRI in prostate cancer[J]. AJR Am J Roentgenol, 2013, 201(6): 1229-1238. DOI: 10.2214/AJR.12.10178.
[4]
LE J D, TAN N, SHKOLYAR E, et al. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology[J]. Eur Urol, 2015, 67(3): 569-576. DOI: 10.1016/j.eururo.2014.08.079.
[5]
LI C M, CHEN M, WANG J Y, et al. Apparent diffusion coefficient values are superior to transrectal ultrasound-guided prostate biopsy for the assessment of prostate cancer aggressiveness[J]. Acta Radiol, 2017, 58(2): 232-239. DOI: 10.1177/0284185116639764.
[6]
MOTTET N, VAN DEN BERGH R C N, BRIERS E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-262. DOI: 10.1016/j.eururo.2020.09.042.
[7]
BARENTSZ J O, RICHENBERG J, CLEMENTS R, et al. ESUR prostate MR guidelines 2012[J].Eur Radiol, 2012, 22(4): 746-757. DOI: 10.1007/s00330-011-2377-y.
[8]
MATOSO A, EPSTEIN J I. Defining clinically significant prostate cancer on the basis of pathological findings[J]. Histopathology, 2019, 74(1): 135-145. DOI: 10.1111/his.13712.
[9]
MEYER H J, WIENKE A, SUROV A. Discrimination between clinical significant and insignificant prostate cancer with apparent diffusion coefficient-a systematic review and meta analysis[J/OL]. BMC Cancer, 2020, 20(1): 482 [2022-07-17]. https://pubmed.ncbi.nlm.nih.gov/32460795. DOI: 10.1186/s12885-020-06942-x.
[10]
PADHANI A R, BARENTSZ J, VILLEIRS G, et al. PI-RADS steering committee: the PI-RADS multiparametric MRI and MRI-directed biopsy pathway[J]. Radiology, 2019, 292(2): 464-474. DOI: 10.1148/radiol.2019182946.
[11]
TAMADA T, KIDO A, TAKEUCHI M, et al. Comparison of PI-RADS version 2 and PI-RADS version 2.1 for the detection of transition zone prostate cancer[J/OL]. Eur J Radiol, 2019, 121: 108704 [2022-07-18]. https://pubmed.ncbi.nlm.nih.gov/31669798. DOI: 10.1016/j.ejrad.2019.108704.
[12]
OUYANG F, WANG B, CHEN Y, et al. Research progress of magnetic resonance imaging in predicting the prognosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(7): 147-151. DOI: 10.12015/issn.1674-8034.2022.07.029.
[13]
CHEN M L, LIANG M Q, ZOU Y J, et al. The predictive value of DWI-ASPECTS for early neurological deterioration in patients with acute middle cerebral artery territory infarction[J]. Radiol Pract, 2022, 37(7): 813-817. DOI: 10.13609/j.cnki.1000-0313.2022.07.003.
[14]
LI H, HAN Y B, HU H Y, et al. Clinical value of diffusion tensor imaging in intracranial tumor anatomy and peripheral white matter nerve fiber bundles[J]. J China Med Univ, 2020, 49(12): 1125-1129. DOI: 10.12007/j.issn.0258-4646.2020.12.014.
[15]
WANG H Y, WANG P, XIANG S T. Research progress of white matter microstructure analysis methods based on diffusion tensor imaging in visual pathway injury[J]. Chin J Magn Reson Imaging, 2022, 13(1): 147-150. DOI: 10.12015/issn.1674-8034.2022.01.034.
[16]
LU N N, DONG J, FANG X, et al. Predicting pathologic response to neoadjuvant chemotherapy in patients with locally advanced breast cancer using multiparametric MRI[J/OL]. BMC Med Imaging, 2021, 21(1): 155 [2022-07-18]. https://www.ncbi.nlm.nih.gov/pubmed/34688263. DOI: 10.1186/s12880-021-00688-z.
[17]
FLIEDNER F P, ENGEL T B, EL-ALI H H, et al. Diffusion weighted magnetic resonance imaging (DW-MRI) as a non-invasive, tissue cellularity marker to monitor cancer treatment response[J/OL]. BMC Cancer, 2020, 20(1): 134 [2022-07-18]. https://www.ncbi.nlm.nih.gov/pubmed/32075610. DOI: 10.1186/s12885-020-6617-x.
[18]
WU D, JIANG K W, LI H, et al. Time-dependent diffusion MRI for quantitative microstructural mapping of prostate cancer[J]. Radiology, 2022, 303(3): 578-587. DOI: 10.1148/radiol.211180.
[19]
XU J Z. Probing neural tissues at small scales: recent progress of oscillating gradient spin echo (OGSE) neuroimaging in humans[J/OL]. J Neurosci Methods, 2021, 349: 109024 [2022-07-19]. https://www.ncbi.nlm.nih.gov/pubmed/33333089. DOI: 10.1016/j.jneumeth.2020.109024.
[20]
HERRERA S L, SHEFT M, MERCREDI M E, et al. Axon diameter inferences in the human corpus callosum using oscillating gradient spin echo sequences[J]. Magn Reson Imaging, 2022, 85: 64-70. DOI: 10.1016/j.mri.2021.10.014.
[21]
MAZZOLI V, MOULIN K, KOGAN F, et al. Diffusion tensor imaging of skeletal muscle contraction using oscillating gradient spin echo[J/OL]. Front Neurol, 2021, 12: 608549 [2022-07-16]. https://www.ncbi.nlm.nih.gov/pubmed/33658976. DOI: 10.3389/fneur.2021.608549.
[22]
CHEN H D, ZHANG J, XIE L F, et al. Diffusion-weighted imaging based on mono-exponential and Bi-exponential models: a comparative study in differential diagnosis of benign and malignant prostate lesions[J]. J Clin Radiol, 2020, 39(6): 1166-1169. DOI: 10.3760/cma.j.issn.0253-9624.2018.06.006.
[23]
GORE J C, XU J Z, COLVIN D C, et al. Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy[J]. NMR Biomed, 2010, 23(7): 745-756. DOI: 10.1002/nbm.1531.
[24]
JIANG X Y, LI H, XIE J P, et al. In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy[J]. Magn Reson Med, 2017, 78(1): 156-164. DOI: 10.1002/mrm.26356.
[25]
LEMBERSKIY G, FIEREMANS E, VERAART J, et al. Characterization of prostate microstructure using water diffusion and NMR relaxation[J/OL]. Front Phys, 2018, 6: 91 [2022-07-23]. https://www.frontiersin.org/articles/10.3389/fphy.2018.00091. DOI: 10.3389/fphy.2018.00091.
[26]
JIANG X Y, DUDZINSKI S, BECKERMANN K E, et al. MRI of tumor T cell infiltration in response to checkpoint inhibitor therapy[J/OL]. J Immunother Cancer, 2020, 8(1): e000328 [2022-07-23]. https://www.ncbi.nlm.nih.gov/pubmed/32581044. DOI: 10.1136/jitc-2019-000328.
[27]
COLVIN D C, YANKEELOV T E, DOES M D, et al. New insights into tumor microstructure using temporal diffusion spectroscopy[J]. Cancer Res, 2008, 68(14): 5941-5947. DOI: 10.1158/0008-5472.CAN-08-0832.
[28]
NOVIKOV D S, JENSEN J H, HELPERN J A, et al. Revealing mesoscopic structural universality with diffusion[J]. Proc Natl Acad Sci U S A, 2014, 111(14): 5088-5093. DOI: 10.1073/pnas.1316944111.
[29]
REYNAUD O, WINTERS K V, HOANG D M, et al. Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas[J]. NMR Biomed, 2016, 29(10): 1350-1363. DOI: 10.1002/nbm.3577.
[30]
XU J Z, LI K, SMITH R A, et al. Characterizing tumor response to chemotherapy at various length scales using temporal diffusion spectroscopy[J/OL]. PLoS One, 2012, 7(7): e41714 [2022-07-23]. https://pubmed.ncbi.nlm.nih.gov/22911846. DOI: 10.1371/journal.pone.0041714.
[31]
REYNAUD O. Time-dependent diffusion MRI in cancer: tissue modeling and applications[J/OL]. Front Phys, 2017, 5: 58 [2022-07-23]. https://www.frontiersin.org/articles/10.3389/fphy.2017.00058. DOI: 10.3389/fphy.2017.00058.
[32]
EPSTEIN J I, EGEVAD L, AMIN M B, et al. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system[J]. Am J Surg Pathol, 2016, 40(2): 244-252. DOI: 10.1097/PAS.0000000000000530.
[33]
HUMPHREY P A. Gleason grading and prognostic factors in carcinoma of the prostate[J]. Mod Pathol, 2004, 17(3): 292-306. DOI: 10.1038/modpathol.3800054.
[34]
CHATTERJEE A, WATSON G, MYINT E, et al. Changes in epithelium, stroma, and lumen space correlate more strongly with gleason pattern and are stronger predictors of prostate ADC changes than cellularity metrics[J]. Radiology, 2015, 277(3): 751-762. DOI: 10.1148/radiol.2015142414.
[35]
CHATTERJEE A, BOURNE R M, WANG S Y, et al. Diagnosis of prostate cancer with noninvasive estimation of prostate tissue composition by using hybrid multidimensional MR imaging: a feasibility study[J]. Radiology, 2018, 287(3): 864-873. DOI: 10.1148/radiol.2018171130.
[36]
LEMBERSKIY G, ROSENKRANTZ A B, VERAART J, et al. Time-dependent diffusion in prostate cancer[J]. Invest Radiol, 2017, 52(7): 405-411. DOI: 10.1097/RLI.0000000000000356.
[37]
JIANG X Y, LI H, DEVAN S P, et al. MR cell size imaging with temporal diffusion spectroscopy[J]. Magn Reson Imaging, 2021, 77: 109-123. DOI: 10.1016/j.mri.2020.12.010.
[38]
XU J Z, JIANG X Y, DEVAN S P, et al. MRI-cytometry: mapping nonparametric cell size distributions using diffusion MRI[J]. Magn Reson Med, 2021, 85(2): 748-761. DOI: 10.1002/mrm.28454.
[39]
JIANG X Y, XU J Z, GORE J C. Mapping hepatocyte size in vivo using temporal diffusion spectroscopy MRI[J]. Magn Reson Med, 2020, 84(5): 2671-2683. DOI: 10.1002/mrm.28299.
[40]
JIANG X Y, XU J Z, GORE J C. Quantitative temporal diffusion spectroscopy as an early imaging biomarker of radiation therapeutic response in gliomas: a preclinical proof of concept[J]. Adv Radiat Oncol, 2019, 4(2): 367-376. DOI: 10.1016/j.adro.2018.11.003.
[41]
SMITH C P, TÜRKBEY B. PI-RADS v2: current standing and future outlook[J]. Turk J Urol, 2018, 44(3): 189-194. DOI: 10.5152/tud.2018.12144.
[42]
ROSENKRANTZ A B, OTO A, TURKBEY B, et al. Prostate imaging reporting and data system (PI-RADS), version 2: a critical look[J]. AJR Am J Roentgenol, 2016, 206(6): 1179-1183. DOI: 10.2214/AJR.15.15765.
[43]
SACKETT J, CHOYKE P L, TURKBEY B. Prostate imaging reporting and data system version 2 for MRI of prostate cancer: can we do better?[J]. Am J Roentgenol, 2019, 212(6): 1244-1252. DOI: 10.2214/ajr.19.21178.
[44]
ZHANG D, ZHU Z C, SONG N, et al. Study of PI-RADS v2.1 and PI-RADS v2 for diagnostic value of transition zone prostate cancer[J]. Chin J Magn Reson Imaging, 2022, 13(1): 54-58. DOI: 10.12015/issn.1674-8034.2022.01.011.
[45]
PARK K J, CHOI S H, KIM M H, et al. Performance of prostate imaging reporting and data system version 2.1 for diagnosis of prostate cancer: a systematic review and meta-analysis[J]. J Magn Reson Imaging, 2021, 54(1): 103-112. DOI: 10.1002/jmri.27546.
[46]
WEI C G, ZHANG Y Y, PAN P, et al. Diagnostic accuracy and interobserver agreement of PI-RADS version 2 and version 2.1 for the detection of transition zone prostate cancers[J]. AJR Am J Roentgenol, 2021, 216(5): 1247-1256. DOI: 10.2214/AJR.20.23883.
[47]
LEE C H, VELLAYAPPAN B, TAN C H. Comparison of diagnostic performance and inter-reader agreement between PI-RADS v2.1 and PI-RADSv2: systematic review and meta-analysis[J/OL]. Br J Radiol, 2022, 95(1131): 20210509 [2022-07-23]. https://pubmed.ncbi.nlm.nih.gov/34520694. DOI: 10.1259/bjr.20210509.
[48]
ZHANG L, TANG M, CHEN S P, et al. A meta-analysis of use of Prostate Imaging Reporting and Data System Version 2 (PI-RADS V2) with multiparametric MR imaging for the detection of prostate cancer[J]. Eur Radiol, 2017, 27(12): 5204-5214. DOI: 10.1007/s00330-017-4843-7.
[49]
FANG Y, WANG X M. The value of transrectal shear wave elastography in the diagnosis of peripheral zone prostate cancer, and the relationship with gleason score[J]. Chinese J Ultrasound Med, 2018, 34(12): 1122-1125. DOI: 10.3969/j.issn.1002-0101.2018.12.022.
[50]
DUAN X Y. Current status and thoughts of PSMA PET/CT imaging application for prostate cancer[J]. J Xi'an Jiaotong Univ Med Sci, 2022, 43(2): 163-167. DOI: 10.7652/jdyxb202202001.

PREV Advances in imaging differential diagnosis of autoimmune pancreatitis and pancreatic cancer
NEXT Application and progression of magnetic resonance imaging VI-RADS score in bladder cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn