Share:
Share this content in WeChat
X
Review
Application of superparamagnetic iron oxide nanoparticle in the diagnosis and treatment of tumor
ZUO Rourou  CHEN Baiqing  SUN Hongzan 

ZUO R R, CHEN B Q, SUN H Z. Application of superparamagnetic iron oxide nanoparticle in the diagnosis and treatment of tumor[J]. Chin J Magn Reson Imaging, 2023, 14(8): 197-202. DOI:10.12015/issn.1674-8034.2023.08.035.


[Abstract] Superparamagnetic iron oxide nanoparticle (SPION) show great potential in tumor diagnosis, construction of multimodal tumor molecular imaging probes and treatment because of their unique properties, such as low toxicity, biocompatibility, strong magnetism and superior role in multi-functional mode. In the future, it can improve the specificity and sensitivity of tumor diagnosis and realize the integration of diagnosis and treatment. Based on the imaging mechanism and synthesis methods of SPION, we described some research progress of SPION in various targeted imaging, multimodal imaging and treatment of tumors in recent years, and looked forward to the future development prospect of SPION in tumor diagnosis and treatment in this paper, in order to better construct a new type of integrated tumor probe based on SPION in the future.
[Keywords] tumor;superparamagnetic iron oxide nanoparticle;diagnosis;treatment;magnetic resonance imaging

ZUO Rourou1   CHEN Baiqing2   SUN Hongzan1*  

1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

2 Department of Nuclear Medicine, People's Hospital of Liaoning Provincial, Shenyang 110000, China

Corresponding author: Sun HZ, E-mail: sunhongzan@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82171910).
Received  2022-10-23
Accepted  2023-06-19
DOI: 10.12015/issn.1674-8034.2023.08.035
ZUO R R, CHEN B Q, SUN H Z. Application of superparamagnetic iron oxide nanoparticle in the diagnosis and treatment of tumor[J]. Chin J Magn Reson Imaging, 2023, 14(8): 197-202. DOI:10.12015/issn.1674-8034.2023.08.035.

[1]
XIE L Q, JIN W W, CHEN H L, et al. Superparamagnetic iron oxide nanoparticles for cancer diagnosis and therapy[J]. J Biomed Nanotechnol, 2019, 15(2): 215-416. DOI: 10.1166/jbn.2019.2678.
[2]
LIU T H, CHANG G, CAO R J, et al. Application of superparamagnetic Fe3O4 nanoparticles in magnetic resonance imaging[J]. Prog Chem, 2015, 27(5): 601-613. DOI: 10.7536/PC141042
[3]
KOSTEVŠEK N, CHEUNG C C L, SERŠA I, et al. Magneto-liposomes as MRI contrast agents: a systematic study of different liposomal formulations[J/OL]. Nanomaterials (Basel), 2020, 10(5): 889 [2022-10-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279489/. DOI: 10.3390/nano10050889.
[4]
MARASINI R, THANH NGUYEN T D, ARYAL S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging[J/OL]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(1): e1580 [2022-10-17]. https://wires.onlinelibrary.wiley.com/doi/10.1002/wnan.1580. DOI: 10.1002/wnan.1580.
[5]
VALLABANI N V S, SINGH S, KARAKOTI A S. Magnetic nanoparticles: current trends and future aspects in diagnostics and nanomedicine[J]. Curr Drug Metab, 2019, 20(6): 457-472. DOI: 10.2174/1389200220666181122124458.
[6]
VALLABANI N V S, SINGH S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics[J/OL]. 3 Biotech, 2018, 8(6): 279 [2022-10-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984604/. DOI: 10.1007/s13205-018-1286-z.
[7]
LIU J X, GUO Y, LI X D, et al. Research progress of superparamagnetic (SPIO) iron oxide nanoparticles in tumor diagnosis[J]. Chin J Lab Diagn, 2017, 21(2): 347-349. DOI: 10.3969/j.issn.1007-4287.2017.02.060
[8]
MIAO Y Q, ZHANG H, PENG M L, et al. Advances of research on quasi-paramagnetic ultrasmall ferrite contrast agents for magnetic resonance imaging[J]. Prog Pharm Sci, 2021, 45(4): 283-289. DOI: 10.1016/j.biomaterials.2019.119581.
[9]
QIAO R R, JIA Q J, ZENG J F, et al. Magnetic iron oxide nanoparticles and their applications in magnetic resonance imaging[J]. ACTA BIOPHYSICA SINICA, 2011, 27(4): 272-288. DOI: 10.3724/sp.j.1260.2011.00272.
[10]
CHAMPAGNE P O, WESTWICK H, BOUTHILLIER A, et al. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review[J]. Nanomedicine (Lond), 2018, 13(11): 1385-1400. DOI: 10.2217/nnm-2018-0021.
[11]
DADFAR S M, ROEMHILD K, DRUDE N I, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications[J/OL]. Adv Drug Deliv Rev, 2019, 138: 302-325 [2022-10-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115878/. DOI: 10.1016/j.addr.2019.01.005.
[12]
HU Y, MIGNANI S, MAJORAL J P, et al. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy[J]. Chem Soc Rev, 2018, 47(5): 1874-1900. DOI: 10.1039/c7cs00657h.
[13]
Qiao R R, ZENG J F, JIA Q J, et al. Magnetic iron oxide nanoparticle—an important cornerstone of MR molecular imaging of tumors[J]. Acta Phys Chimica Sin, 2012, 28(5): 993-1011. DOI: 10.3866/PKU.WHXB201203023
[14]
CHERAGHIPOUR E, PAKSHIR M. Environmentally friendly magnetic chitosan nano-biocomposite for Cu(Ⅱ) ions adsorption and magnetic nano-fluid hyperthermia: CCD-RSM design[J/OL]. J Environ Chem Eng, 2021, 9(2): 104883 [2022-10-20]. https://www.sciencedirect.com/science/article/pii/S221334372031232X. DOI: 10.1016/j.jece.2020.104883.
[15]
ABDULWAHID F S, HAIDER A J, AL-MUSAWI S. Iron oxide nanoparticles (IONPs): synthesis, surface functionalization, and targeting drug delivery strategies: mini-review[J/OL]. Nano, 2022, 17(11) [2022-10-20]. https://www.worldscientific.com/doi/10.1142/S1793292022300079. DOI: 10.1142/s1793292022300079.
[16]
YILMAZ S, ICHEDEF C, KARATAY K B, et al. Polymer coated iron nanoparticles: radiolabeling & in vitro studies[J]. Curr Radiopharm, 2021, 14(1): 37-45. DOI: 10.2174/1874471013666200430094113.
[17]
SCURTI S, CARETTI D, MOLLICA F, et al. Chain-breaking antioxidant and peroxyl radical trapping activity of phenol-coated magnetic iron oxide nanoparticles[J/OL]. Antioxidants (Basel), 2022, 11(6): 1163 [2022-10-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219998/. DOI: 10.3390/antiox11061163.
[18]
KHODADUST R, UNAL O, YAGCI ACAR H. Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles[J/OL]. Beilstein J Nanotechnol, 2022, 13: 82-95 [2022-10-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787352/. DOI: 10.3762/bjnano.13.6.
[19]
KARAAGAC O, KÖÇKAR H. Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles[J/OL]. J Magn Magn Mater, 2022, 551: 169140 [2022-10-22]. https://www.sciencedirect.com/science/article/pii/S030488532200107X. DOI: 10.1016/j.jmmm.2022.169140.
[20]
KANO S, TAKAGI K, YAMAMINAMI T, et al. pH- and thermoresponsive aggregation behavior of polymer-grafted magnetic nanoparticles[J]. Polym J, 2021, 53(9): 1011-1018. DOI: 10.1038/s41428-021-00494-y.
[21]
ZHAO Z H, LI M Y, ZENG J, et al. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging[J/OL]. Bioact Mater, 2022, 12: 214-245 [2022-10-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897217/. DOI: 10.1016/j.bioactmat.2021.10.014.
[22]
LAN C S, CHENG Y Z, CAI K Y. Quantitative measurement and real-time control of ablation margins during percutaneous radiofrequency ablation therapy of liver cancer[J]. Chin J Med Phys, 2018, 35(8): 972-977. DOI: 10.3969/j.issn.1005-202X.2018.08.020.
[23]
HENDRIKS P, NOORTMAN W A, BAETENS T R, et al. Quantitative volumetric assessment of ablative margins in hepatocellular carcinoma: predicting local tumor progression using nonrigid registration software[J/OL]. J Oncol, 2019, 2019: 4049287 [2022-10-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770329/. DOI: 10.1155/2019/4049287.
[24]
FUKUDA K, MORI K, HASEGAWA N, et al. Safety margin of radiofrequency ablation for hepatocellular carcinoma: a prospective study using magnetic resonance imaging with superparamagnetic iron oxide[J]. Jpn J Radiol, 2019, 37(7): 555-563. DOI: 10.1007/s11604-019-00843-1.
[25]
GEIßEN W, ENGELS S, AUST P, et al. Diagnostic accuracy of magnetometer-guided sentinel lymphadenectomy after intraprostatic injection of superparamagnetic iron oxide nanoparticles in intermediate- and high-risk prostate cancer using the magnetic activity of sentinel nodes[J/OL]. Front Pharmacol, 2019, 10: 1123 [2022-10-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797623/. DOI: 10.3389/fphar.2019.01123.
[26]
WINTER A, KOWALD T, PAULO T S, et al. Magnetic resonance sentinel lymph node imaging and magnetometer-guided intraoperative detection in prostate cancer using superparamagnetic iron oxide nanoparticles[J/OL]. Int J Nanomedicine, 2018, 13: 6689-6698 [2022-10-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204856/. DOI: 10.2147/IJN.S173182.
[27]
YU X R, CAO B L, LI W, et al. Accuracy of tumor perfusion assessment in rat C6 gliomas model with USPIO[J/OL]. Open Med (Wars), 2019, 14: 778-784 [2022-10-23]. https://pubmed.ncbi.nlm.nih.gov/31737781/. DOI: 10.1515/med-2019-0091.
[28]
WANG L T, WANG J L, LIU H W, et al. Process in targeted contrast agents for cancer imaging[J]. J China Pharm Univ, 2017, 48(6): 635-645. DOI: 10.11665/j.issn.1000-5048.20170602
[29]
CARRESE B, SANITÀ G, LAMBERTI A. Nanoparticles design for theranostic approach in cancer disease[J/OL]. Cancers, 2022, 14(19): 4654 [2022-10-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564040/. DOI: 10.3390/cancers14194654.
[30]
BEHERA A, PADHI S. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review[J]. Environ Chem Lett, 2020, 18(5): 1557-1567. DOI: 10.1007/s10311-020-01022-9.
[31]
XIAO Y, YU D H. Tumor microenvironment as a therapeutic target in cancer[J/OL]. Pharmacol Ther, 2021, 221: 107753 [2022-10-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084948/. DOI: 10.1016/j.pharmthera.2020.107753.
[32]
WANG P J, SHEN A J. Research status and prospect of molecular imaging probe[J]. Chin J Med Imaging Technol, 2017, 33(10):1445-1446. DOI: 10.13929/j.1003-3289.201707087.
[33]
YING N, LIN X D, XIE M H, et al. Effect of surface ligand modification on the properties of anti-tumor nanocarrier[J/OL]. Colloids Surf B Biointerfaces, 2022, 220: 112944 [2022-10-25]. https://www.sciencedirect.com/science/article/pii/S0927776522006282. DOI: 10.1016/j.colsurfb.2022.112944.
[34]
SHI X D, SUN Y L, SHEN L T. Preparation and in vivo imaging of a novel potential α_vβ_3 targeting PET/MRI dual-modal imaging agent[J].J Radioanal Nucl Chem, 2022, 331(9): 3485-3494. DOI: 10.1007/s10967-022-08431-w.
[35]
HONG J W, GUO G X, WU S X, et al. Altered MUC1 epitope-specific CTLs: a potential target for immunotherapy of pancreatic cancer[J]. J Leukoc Biol, 2022, 112(6): 1577-1590. DOI: 10.1002/JLB.5MA0922-749R.
[36]
WANG S D, YOU L, DAI M H, et al. Mucins in pancreatic cancer: a well-established but promising family for diagnosis, prognosis and therapy[J]. J Cell Mol Med, 2020, 24(18): 10279-10289. DOI: 10.1111/jcmm.15684.
[37]
ZOU Q, ZHANG C J, YAN Y Z, et al. MUC-1 aptamer targeted superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of pancreatic cancer in vivo and in vitro experiment[J]. J Cell Biochem, 2019, 120(11): 18650-18658. DOI: 10.1002/jcb.28950.
[38]
KHANIABADI P M, SHAHBAZI-GAHROUEI D, JAAFAR M S, et al. Magnetic iron oxide nanoparticles as T2 MR imaging contrast agent for detection of breast cancer (MCF-7) cell[J]. Avicenna J Med Biotechnol, 2017, 9(4): 181-188.
[39]
LIN J M, XIN P Y, AN L, et al. Fe3O4-ZIF-8 assemblies as pH and glutathione responsive T2-T1 switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo[J]. Chem Commun (Camb), 2019, 55(4): 478-481. DOI: 10.1039/c8cc08943d.
[40]
PAN C S, LIN J J, ZHENG J J, et al. An intelligent T1-T2 switchable MRI contrast agent for the non-invasive identification of vulnerable atherosclerotic plaques[J]. Nanoscale, 2021, 13(13): 6461-6474. DOI: 10.1039/D0NR08039J.
[41]
LIU W, YIN S Y, HU Y C, et al. Microemulsion-confined assembly of magnetic nanoclusters for pH/H2O2 dual-responsive T2-T1 switchable MRI[J]. ACS Appl Mater Interfaces, 2022, 14(2): 2629-2637. DOI: 10.1021/acsami.1c22747.
[42]
LI Z H, QIAN K, OZIOMA-UDOCHUKWU A, et al. A smart glutathione and H2O2 dual-responsive signal inversion magnetic resonance imaging contrast agent for tumor diagnosis[J/OL]. Chin J Anal Chem, 2021, 49(8): e21141-e21150 [2022-10-27]. https://www.sciencedirect.com/science/article/pii/S1872204021601111. DOI: 10.1016/S1872-2040(21)60111-1.
[43]
SAAD M A, XAVIERSELVAN M, SHARIF H A, et al. Dual function antibody conjugates for multimodal imaging and photoimmunotherapy of cancer cells[J]. Photochem Photobiol, 2022, 98(1): 220-231. DOI: 10.1111/php.13501.
[44]
ROSENKRANS Z T, FERREIRA C A, NI D L, et al. Internally responsive nanomaterials for activatable multimodal imaging of cancer[J/OL]. Adv Healthc Mater, 2021, 10(5): e2000690 [2022-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855763/. DOI: 10.1002/adhm.202000690.
[45]
GHOLAMI A, MOUSAVIE ANIJDAN S H. Development of 153Sm-DTPA-SPION as a theranostic dual contrast agents in SPECT/MRI[J]. Iran J Basic Med Sci, 2016, 19(10): 1056-1062.
[46]
PHAM T N, LENGKEEK N A, GREGURIC I, et al. Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles[J/OL]. Int J Nanomedicine, 2017, 12: 899-909 [2022-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291326/. DOI: 10.2147/IJN.S127171.
[47]
MADRU R, BUDASSI M, BENVENISTE H, et al. Simultaneous preclinical positron emission tomography-magnetic resonance imaging study of lymphatic drainage of Chelator-free 64Cu-labeled nanoparticles[J]. Cancer Biother Radiopharm, 2018, 33(6): 213-220. DOI: 10.1089/cbr.2017.2412.
[48]
CHEN X, ZHOU H, LI X S, et al. Plectin-1 targeted dual-modality nanoparticles for pancreatic cancer imaging[J/OL]. EBioMedicine, 2018, 30: 129-137 [2022-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952251/. DOI: 10.1016/j.ebiom.2018.03.008.
[49]
LIU J J, WANG Z, NIE L M, et al. RGD-functionalised melanin nanoparticles for intraoperative photoacoustic imaging-guided breast cancer surgery[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3): 847-860. DOI: 10.1007/s00259-021-05545-3.
[50]
THAWANI J P, AMIRSHAGHAGHI A, YAN L S, et al. Photoacoustic-guided surgery with indocyanine green-coated superparamagnetic iron oxide nanoparticle clusters[J/OL]. Small, 2017, 13(37) [2022-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884067/. DOI: 10.1002/smll.201701300.
[51]
NOSRATI R, ABNOUS K, ALIBOLANDI M, et al. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma[J/OL]. Sci Rep, 2021, 11(1): 13065 [2022-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219724/. DOI: 10.1038/s41598-021-92391-w.
[52]
HOANG THI T T, NGUYEN TRAN D H, BACH L G, et al. Functional magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery[J/OL]. Pharmaceutics, 2019, 11(3): 120 [2022-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470966/. DOI: 10.3390/pharmaceutics11030120.

PREV Application progress of MRI in the prognostic prediction of multiple myeloma
NEXT Correlation between low-frequency amplitude and serum inflammatory factors in resting-state functional magnetic resonance imaging in mild to moderate depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn