Share:
Share this content in WeChat
X
Clinical Article
A study of regional homogeneity altered of brain function and cognitive dysfunction in patients with ischemic stroke
DING Jurong  LI Yuan  HUA Bo  FENG Chenyu  TANG Zhiling  YANG Chenghao  DING Xin 

DING J R, LI Y, HUA B, et al. A study of regional homogeneity altered of brain function and cognitive dysfunction in patients with ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(9): 7-12. DOI:10.12015/issn.1674-8034.2023.09.002.


[Abstract] Objective To explore the changes of regional homogeneity (ReHo) of resting-state brain activity in patients with ischemic stroke (IS) and its relationship with cognitive dysfunction.Materials and Methods Twenty patients with IS and 27 age- and sex- matched healthy controls were prospectively enrolled. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scan and ReHo analysis. The group differences were compared by using two-sample t test. Person correlation analysis was used to analyze the correlation between the abnormal ReHo values and the scores of mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) scale in IS patient group.Results Compared with the healthy control group, the IS patient group showed reduced in ReHo values in the right middle frontal gyrus, postcentral gyrus, middle temporal gyrus and the left inferior frontal gyrus, triangular part. The increased in ReHo values were found in the bilateral supplementary motor area, median cingulate and paracingulate gyri, the left superior parietal gyrus, precuneus and paracentral lobule. The group differences were statistically significant (P<0.001, AlphaSim corrected). In addition, the increased ReHo value in the bilateral supplementary motor area and left superior parietal gyrus showed a significant negative correlation with MMSE score (r=-0.640, P=0.014; r=-0.541, P=0.046; r=-0.563, P=0.036).Conclusions The spontaneous ReHo changes exist in multiple brain regions in patients with IS, which may be related to cognitive dysfunction. ReHo values in abnormal brain regions may be an important biomarker of IS.
[Keywords] ischemic stroke;brain activity;regional homogeneity;cognitive dysfunction;resting-state functional magnetic resonance imaging;magnetic resonance imaging

DING Jurong1, 2*   LI Yuan1, 2   HUA Bo1, 2   FENG Chenyu1, 2   TANG Zhiling1, 2   YANG Chenghao3   DING Xin4  

1 College of Automation and Information Engineering, Sichuan University of Science & Engineering, Yibin 644000, China

2 Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China

3 Department of Neurosurgery, Zigong Fourth People's Hospital, Zigong 643000, China

4 Department of Neurology, Chengdu Second People's Hospital, Chengdu 610000, China

Corresponding author: Ding JR, E-mail: jurongding@gmail.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81401482); Artificial Intelligence Key Laboratory of Sichuan Province Open Fund (No. 2021RYJ08); Foundation of Chengdu Municipal Health Commission (No. 2022151).
Received  2023-04-12
Accepted  2023-09-06
DOI: 10.12015/issn.1674-8034.2023.09.002
DING J R, LI Y, HUA B, et al. A study of regional homogeneity altered of brain function and cognitive dysfunction in patients with ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(9): 7-12. DOI:10.12015/issn.1674-8034.2023.09.002.

[1]
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/S1474-4422(21)00252-0.
[2]
TU W J, HUA Y, YAN F, et al. Prevalence of stroke in China, 2013-2019: a population-based study[J/OL]. Lancet Reg Health West Pac, 2022, 28: 100550 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/36507089/. DOI: 10.1016/j.lanwpc.2022.100550.
[3]
PHIPPS M S, CRONIN C A. Management of acute ischemic stroke[J/OL]. BMJ, 2020, 368: l6983 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/32054610/. DOI: 10.1136/bmj.l6983.
[4]
TUO Q Z, ZHANG S T, LEI P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications[J]. Med Res Rev, 2022, 42(1): 259-305. DOI: 10.1002/med.21817.
[5]
ROST N S, BRODTMANN A, PASE M P, et al. Post-stroke cognitive impairment and dementia[J]. Circ Res, 2022, 130(8): 1252-1271. DOI: 10.1161/CIRCRESAHA.122.319951.
[6]
BENNETT C M, MILLER M B. How reliable are the results from functional magnetic resonance imaging?[J/OL]. Ann N Y Acad Sci, 2010, 1191: 133-155 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/20392279/. DOI: 10.1111/j.1749-6632.2010.05446.x.
[7]
MIN Y, LIU C, ZUO L J, et al. The relationship between altered degree centrality and cognitive function in mild subcortical stroke: a resting-state fMRI study[J/OL]. Brain Res, 2023, 1798: 148125 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/36265670/. DOI: 10.1016/j.brainres.2022.148125.
[8]
ZHU D, LIU Y K, ZHAO Y D, et al. Dynamic changes of resting state functional network following acute ischemic stroke[J/OL]. J Chem Neuroanat, 2023, 130: 102272 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/37044352/. DOI: 10.1016/j.jchemneu.2023.102272.
[9]
ZANG Y F, JIANG T Z, LU Y L, et al. Regional homogeneity approach to fMRI data analysis[J]. NeuroImage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[10]
YAO X D, YIN Z Y, LIU F, et al. Shared and distinct regional homogeneity changes in bipolar and unipolar depression[J/OL]. Neurosci Lett, 2018, 673: 28-32 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/29466722/. DOI: 10.1016/j.neulet.2018.02.033.
[11]
YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[12]
WANG Q Q, WANG C J, DENG Q Y, et al. Alterations of regional spontaneous brain activities in anxiety disorders: a meta-analysis[J/OL]. J Affect Disord, 2022, 296: 233-240 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/34619449/. DOI: 10.1016/j.jad.2021.09.062.
[13]
WU P, ZENG F, LI Y X, et al. Changes of resting cerebral activities in subacute ischemic stroke patients[J]. Neural Regen Res, 2015, 10(5): 760-765. DOI: 10.4103/1673-5374.156977.
[14]
SMITH V, MITCHELL D J, DUNCAN J. Role of the default mode network in cognitive transitions[J]. Cereb Cortex, 2018, 28(10): 3685-3696. DOI: 10.1093/cercor/bhy167.
[15]
XU P, CHEN A, LI Y P, et al. Medial prefrontal cortex in neurological diseases[J]. Physiol Genomics, 2019, 51(9): 432-442. DOI: 10.1152/physiolgenomics.00006.2019.
[16]
BROWNSETT S L, WARREN J E, GERANMAYEH F, et al. Cognitive control and its impact on recovery from aphasic stroke[J]. Brain, 2014, 137(Pt 1): 242-254. DOI: 10.1093/brain/awt289.
[17]
KOYAMA M S, O'CONNOR D, SHEHZAD Z, et al. Differential contributions of the middle frontal gyrus functional connectivity to literacy and numeracy[J/OL]. Sci Rep, 2017, 7(1): 17548 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/29235506/. DOI: 10.1038/s41598-017-17702-6.
[18]
BIESBROEK J M, LIM J S, WEAVER N A, et al. Anatomy of phonemic and semantic fluency: a lesion and disconnectome study in 1231 stroke patients[J/OL]. Cortex, 2021, 143: 148-163. [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/34450565/. DOI: 10.1016/j.cortex.2021.06.019.
[19]
QUAN M N, LEE S H, KUBICKI M, et al. White matter tract abnormalities between rostral middle frontal gyrus, inferior frontal gyrus and striatum in first-episode schizophrenia[J]. Schizophr Res, 2013, 145(1/2/3): 1-10. DOI: 10.1016/j.schres.2012.11.028.
[20]
LI Z Y, SI L H, SHEN B, et al. Altered functional activity in the right superior temporal gyrus in patients with definite vestibular migraine[J]. Neurol Sci, 2023, 44(5): 1719-1729. DOI: 10.1007/s10072-022-06570-2.
[21]
GOLLION C. Cortical excitability in migraine: contributions of magnetic resonance imaging[J]. Rev Neurol, 2021, 177(7): 809-815. DOI: 10.1016/j.neurol.2021.07.008.
[22]
DELAHOY R, DAVEY C G, JAMIESON A J, et al. Modulation of the brain's core-self network by self-appraisal processes[J/OL]. Neuroimage, 2022, 251: 118980 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/35143976/. DOI: 10.1016/j.neuroimage.2022.118980.
[23]
TANGLAY O, YOUNG I M, DADARIO N B, et al. Anatomy and white-matter connections of the precuneus[J]. Brain Imaging Behav, 2022, 16(2): 574-586. DOI: 10.1007/s11682-021-00529-1.
[24]
LIU F W, CHEN C C, HONG W J, et al. Selectively disrupted sensorimotor circuits in chronic stroke with hand dysfunction[J]. CNS Neurosci Ther, 2022, 28(5): 677-689. DOI: 10.1111/cns.13799.
[25]
MA Z Z, WU J J, HUA X Y, et al. Brain function and upper limb deficit in stroke with motor execution and imagery: a cross-sectional functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 806406 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/35663563/. DOI: 10.3389/fnins.2022.806406.
[26]
WANG S M, KIM N Y, UM Y H, et al. Default mode network dissociation linking cerebral beta amyloid retention and depression in cognitively normal older adults[J]. Neuropsychopharmacology, 2021, 46(12): 2180-2187. DOI: 10.1038/s41386-021-01072-9.
[27]
HU Q L, WANG Q Q, LI Y F, et al. Intrinsic brain activity alterations in patients with mild cognitive impairment-to-normal reversion: a resting-state functional magnetic resonance imaging study from voxel to whole-brain level[J/OL]. Front Aging Neurosci, 2021, 13: 788765 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/35111039/. DOI: 10.3389/fnagi.2021.788765.
[28]
WEI X Y, SHI G X, TU J F, et al. Structural and functional asymmetry in precentral and postcentral gyrus in patients with unilateral chronic shoulder pain[J/OL]. Front Neurol, 2022, 13: 792695 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/35250808/. DOI: 10.3389/fneur.2022.792695.
[29]
MASTRIA G, SCALITI E, MEHRING C, et al. Morphology, connectivity, and encoding features of tactile and motor representations of the fingers in the human precentral and postcentral gyrus[J]. J Neurosci, 2023, 43(9): 1572-1589. DOI: 10.1523/JNEUROSCI.1976-21.2022.
[30]
PLANETTA P J, SERVOS P. The postcentral gyrus shows sustained fMRI activation during the tactile motion aftereffect[J]. Exp Brain Res, 2012, 216(4): 535-544. DOI: 10.1007/s00221-011-2957-8.
[31]
CASPERS J, RUBBERT C, EICKHOFF S B, et al. Within- and across-network alterations of the sensorimotor network in Parkinson's disease[J]. Neuroradiology, 2021, 63(12): 2073-2085. DOI: 10.1007/s00234-021-02731-w.
[32]
MATHEW P, BATCHALA P P, ELUVATHINGAL MUTTIKKAL T J. Supplementary motor area stroke mimicking functional disorder[J/OL]. Stroke, 2018, 49(2): e28-e30 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/29311268/. DOI: 10.1161/STROKEAHA.117.019106.
[33]
SASABAYASHI D, TAKAYANAGI Y, TAKAHASHI T, et al. Reduced cortical thickness of the paracentral lobule in at-risk mental state individuals with poor 1-year functional outcomes[J/OL]. Transl Psychiatry, 2021, 11(1): 396 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/34282119/. DOI: 10.1038/s41398-021-01516-2.
[34]
ZHANG R, ZHANG L H, WEI S N, et al. Increased amygdala-paracentral lobule/precuneus functional connectivity associated with patients with mood disorder and suicidal behavior[J/OL]. Front Hum Neurosci, 2020, 14: 585664 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/33519398/. DOI: 10.3389/fnhum.2020.585664.
[35]
DIAO Q Q, LIU J C, WANG C H, et al. Gray matter volume changes in chronic subcortical stroke: a cross-sectional study[J/OL]. Neuroimage Clin, 2017, 14: 679-684 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/28377881/. DOI: 10.1016/j.nicl.2017.01.031.
[36]
LIU H C, CHEN L P, ZHANG G F, et al. Scalp acupuncture enhances the functional connectivity of visual and cognitive-motor function network of patients with acute ischemic stroke[J/OL]. Evid Based Complement Alternat Med, 2020, 2020: 8836794 [2023-04-11]. https://pubmed.ncbi.nlm.nih.gov/33376500/. DOI: 10.1155/2020/8836794.

PREV Correlation between low-frequency amplitude and serum inflammatory factors in resting-state functional magnetic resonance imaging in mild to moderate depression
NEXT Abnormal changes of brain function in patients with OSAHS: VMHC-based rs-fMRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn