Share:
Share this content in WeChat
X
Clinical Article
Changes in spontaneous brain activity in patients with postherpetic neuralgia: An ALE Meta-analysis based on rs-fMRI data
QIU Zhiqiang  ZHONG Xiangkai  YANG Qiming  SHI Xiran  XU Xiaoxue 

QIU Z Q, ZHONG X K, YANG Q M, et al. Changes in spontaneous brain activity in patients with postherpetic neuralgia: An ALE Meta-analysis based on rs-fMRI data[J]. Chin J Magn Reson Imaging, 2023, 14(9): 19-25. DOI:10.12015/issn.1674-8034.2023.09.004.


[Abstract] Objective To explore the characteristics of spontaneous brain activity changes in patients with postherpetic neuralgia (PHN), so as to reveal the possible neural mechanism of PHN, and lay a foundation for the objective evaluation of the therapeutic effect of PHN through the changes of spontaneous brain activity in the later stage.Materials and Methods PubMed, The Cochrane Library, EMBase, Medine, and Web of Science, CNKI, CBM, VIP database and Wanfang Data Knowledge service Platform were searched for literatures, which study the changes of brain basal activity in patients with PHN using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) /fractional amplitude of low-frequency fluctuation (fALFF) analysis methods. Activation likelihood estimation (ALE) was used to perform a Meta-analysis of the brain regions with spontaneous brain activity changes in PHN patients compared with healthy controls (HCs).Results A total of 16 studies from 11 articles were included, including 5 ReHo studies, 4 ALFF studies and 7 fALFF studies, with a total of 200 PHN patients and 236 HCs. Combined with the data from the ALFF/fALFF and ReHo studies, the Meta-analysis results showed that compared with HCs, PHN patients had increased spontaneous brain activity in the right middle frontal gyrus, right thalamus, left striatum and right cuneus, while decreased spontaneous brain activity in the right temporal lobe and right parahippocampal gyrus. Meta-analysis using ALFF/fALFF data alone showed that compared with HCs, PHN patients had increased spontaneous brain activity in the right middle frontal gyrus, right thalamus and left striatum, but no decreased spontaneous brain activity was found. Meta-analysis using data from ReHo study alone showed that there were no regions with increased or decreased spontaneous brain activity in PHN patients compared with HCs.Conclusions In this paper, through the ALE Meta-analysis method, based on the data of reported rs-fMRI whole brain studies, we find that PHN patients have spontaneous brain activity changes in the right middle frontal gyrus, right thalamus, left striatum, right cuneus, right temporal lobe and right parahippocampal gyrus. This provides an important basis for objective evaluation of PHN treatment efficacy through changes in spontaneous brain activity.
[Keywords] postherpetic neuralgia;spontaneous brain activity;resting state functional magnetic resonance imaging;Meta analysis;activation likelihood estimation;magnetic resonance imaging

QIU Zhiqiang   ZHONG Xiangkai   YANG Qiming   SHI Xiran   XU Xiaoxue*  

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

Corresponding author: Xu XX, E-mail: nclittlesnownc@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Clinical Key Specialty Construction Manuscript [No. (2023)87]; Science and Technology Project of Sichuan Health Commission (No. 23LCYJ019).
Received  2023-02-24
Accepted  2023-08-09
DOI: 10.12015/issn.1674-8034.2023.09.004
QIU Z Q, ZHONG X K, YANG Q M, et al. Changes in spontaneous brain activity in patients with postherpetic neuralgia: An ALE Meta-analysis based on rs-fMRI data[J]. Chin J Magn Reson Imaging, 2023, 14(9): 19-25. DOI:10.12015/issn.1674-8034.2023.09.004.

[1]
PATIL A, GOLDUST M, WOLLINA U. Herpes zoster: a review of clinical manifestations and management[J/OL]. Viruses, 2022, 14(2): 192 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/35215786/. DOI: 10.3390/v14020192.
[2]
BIAN Z Y, YU J, TU M Q, et al. Acupuncture therapies for postherpetic neuralgia: a protocol for a systematic review and Bayesian network meta-analysis[J/OL]. BMJ Open, 2022, 12(3): e056632 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/35301212/. DOI: 10.1136/bmjopen-2021-056632.
[3]
CAO S, SONG G J, ZHANG Y, et al. Abnormal local brain activity beyond the pain matrix in postherpetic neuralgia patients: a resting-state functional MRI study[J/OL]. Pain Physician, 2017, 20(2): E303-E314 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/28158166/. DOI: 10.36076/ppj.2017.E314.
[4]
GU L L. Study on the changes of brain function and structure in patients with postherpetic neuralgia based on resting fMRI[D].Nanchang: Nanchang University, 2019.
[5]
BAI L L, YANG W, ZHOU M, et al. Magnetic resonance imaging study of brain function and structure changes in patients with post-herpetic neuralgia[J]. Imag Sci Photochem, 2022, 40(2): 286-290. DOI: 10.7517/issn.1674-0475.211101.
[6]
TURKELTAUB P E, EDEN G F, JONES K M, et al. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation[J]. Neuroimage, 2002, 16(3Pt 1): 765-780. DOI: 10.1006/nimg.2002.1131.
[7]
MERSKEY H, BOGDUK N. Classification of chronic pain. Descriptions of chronic pain syndromes and definitions of pain terms. Prepared by the International Association for the Study of Pain, Subcommittee on Taxonomy[J/OL]. Pain Suppl, 1986, 3: S1-S226 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/3461421/.
[8]
MAZZIOTTA J C, TOGA A W, EVANS A, et al. A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)[J]. NeuroImage, 1995, 2(2): 89-101. DOI: 10.1006/nimg.1995.1012.
[9]
TALAIRACH J, TOURNOUX P, RAYPORT M. Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging[J/OL]. J Laryngol Otol, 1988 [2023-02-23]. https://www.semanticscholar.org/paper/Co-Planar-Stereotaxic-Atlas-of-the-Human-Brain%3A-An-Talairach-Tournoux/f2c1ddf5c34a5899c5cbee5b5dc469f39ff9c21e. DOI: 10.1017/S0022215100111892.
[10]
STANG A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605. DOI: 10.1007/s10654-010-9491-z.
[11]
EICKHOFF S B, BZDOK D, LAIRD A R, et al. Activation likelihood estimation meta-analysis revisited[J]. Neuroimage, 2012, 59(3): 2349-2361. DOI: 10.1016/j.neuroimage.2011.09.017.
[12]
EICKHOFF S B, LAIRD A R, GREFKES C, et al. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty[J]. Hum Brain Mapp, 2009, 30(9): 2907-2926. DOI: 10.1002/hbm.20718.
[13]
EICKHOFF S B, NICHOLS T E, LAIRD A R, et al. Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation[J/OL]. Neuroimage, 2016, 137: 70-85 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/27179606/. DOI: 10.1016/j.neuroimage.2016.04.072.
[14]
GHAHARI S, FARAHANI N, FATEMIZADEH E, et al. Investigating time-varying functional connectivity derived from the Jackknife Correlation method for distinguishing between emotions in fMRI data[J]. Cogn Neurodyn, 2020, 14(4): 457-471. DOI: 10.1007/s11571-020-09579-5.
[15]
CAO S. Multimodal magnetic resonance imaging study of Herpes zoster and its postherpetic neuralgia[D].Shanghai: Shanghai Jiao Tong University, 2017. DOI: 10.27307/d.cnki.gsjtu.2017.000849.
[16]
YIN R J. Study on resting functional magnetic resonance imaging of brain in patients with postherpetic neuralgia[D].Kunming: Kunming Medical University, 2017.
[17]
LIAO X, CHEN F Y, TAO W, et al. Dynamic observation of baseline brain activities in patients with postherpetic neuralgia revealed by resting-state functional MRI[J]. Prog Biochem Biophys, 2015, 42(10): 947-954. DOI: 10.16476/j.pibb.2015.0095.
[18]
ZHANG Y. Multimodal magnetic resonance imaging study of postherpetic neuralgia[D].Shanghai: Shanghai Jiao Tong University, 2016. DOI: 10.27307/d.cnki.gsjtu.2016.003364.
[19]
JIANG C C. Study on resting functional magnetic resonance imaging and voxel-based magnetic resonance morphology of patients with postherpetic neuralgia[D].Suzhou: Soochow University, 2017.
[20]
CAO S, LI Y, DENG W W, et al. Local brain activity differences between Herpes zoster and postherpetic neuralgia patients: a resting-state functional MRI study[J/OL]. Pain Physician, 2017, 20(5): E687-E699 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/28727713/.
[21]
GU L L, HONG S D, JIANG J, et al. Bidirectional alterations in ALFF across slow-5 and slow-4 frequencies in the brains of postherpetic neuralgia patients[J/OL]. J Pain Res, 2019, 12: 39-47 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/30588078/. DOI: 10.2147/JPR.S179077.
[22]
HUANG J B, LI Y X, XIE H J, et al. Abnormal intrinsic brain activity and neuroimaging-based fMRI classification in patients with Herpes zoster and postherpetic neuralgia[J/OL]. Front Neurol, 2020, 11: 532110 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/33192967/. DOI: 10.3389/fneur.2020.532110.
[23]
DAI H, JIANG C C, WU G Z, et al. A combined DTI and resting state functional MRI study in patients with postherpetic neuralgia[J]. Jpn J Radiol, 2020, 38(5): 440-450. DOI: 10.1007/s11604-020-00926-4.
[24]
GAN Z, GANGADHARAN V, LIU S, et al. Layer-specific pain relief pathways originating from primary motor cortex[J]. Science, 2022, 378(6626): 1336-1343. DOI: 10.1126/science.add4391.
[25]
APKARIAN A V, BUSHNELL M C, TREEDE R D, et al. Human brain mechanisms of pain perception and regulation in health and disease[J]. Eur J Pain, 2005, 9(4): 463-484. DOI: 10.1016/j.ejpain.2004.11.001.
[26]
TRACEY I, MANTYH P W. The cerebral signature for pain perception and its modulation[J]. Neuron, 2007, 55(3): 377-391. DOI: 10.1016/j.neuron.2007.07.012.
[27]
YOU H J, LEI J, PERTOVAARA A. Thalamus: the 'promoter' of endogenous modulation of pain and potential therapeutic target in pathological pain[J/OL]. Neurosci Biobehav Rev, 2022, 139: 104745 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/35716873/. DOI: 10.1016/j.neubiorev.2022.104745.
[28]
ZHANG Y, YU T, QIN B Y, et al. Microstructural abnormalities in gray matter of patients with postherpetic neuralgia: a diffusional kurtosis imaging study[J/OL]. Pain Physician, 2016, 19(4): E601-E611 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/27228526/.
[29]
MURRAY I, BHANOT G, BHARGAVA A. Neuron-Glia-immune triad and cortico-limbic system in pathology of pain[J/OL]. Cells, 2021, 10(6): 1553 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/34205372/. DOI: 10.3390/cells10061553.
[30]
TANGLAY O, YOUNG I M, DADARIO N B, et al. Anatomy and white-matter connections of the precuneus[J]. Brain Imaging Behav, 2022, 16(2): 574-586. DOI: 10.1007/s11682-021-00529-1.
[31]
PRICE D D. Psychological and neural mechanisms of the affective dimension of pain[J]. Science, 2000, 288(5472): 1769-1772. DOI: 10.1126/science.288.5472.1769.
[32]
STERN J, JEANMONOD D, SARNTHEIN J. Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients[J]. Neuroimage, 2006, 31(2): 721-731. DOI: 10.1016/j.neuroimage.2005.12.042.
[33]
REIS G M, DIAS Q M, SILVEIRA J W, et al. Antinociceptive effect of stimulating the occipital or retrosplenial cortex in rats[J]. J Pain, 2010, 11(10): 1015-1026. DOI: 10.1016/j.jpain.2010.01.269.
[34]
BINDING L P, DASGUPTA D, GIAMPICCOLO D, et al. Structure and function of language networks in temporal lobe epilepsy[J]. Epilepsia, 2022, 63(5): 1025-1040. DOI: 10.1111/epi.17204.
[35]
TANNER J J, HANCHATE S, PRICE C C, et al. Relationships between chronic pain stage, cognition, temporal lobe cortex, and sociodemographic variables[J]. J Alzheimers Dis, 2021, 80(4): 1539-1551. DOI: 10.3233/JAD-201345.
[36]
YANG S Y, WU Y, SUN L F, et al. Reorganization of brain networks in patients with temporal lobe epilepsy and comorbid headache[J/OL]. Epilepsy Behav, 2023, 140: 109101 [2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/36736237/. DOI: 10.1016/j.yebeh.2023.109101.

PREV Abnormal changes of brain function in patients with OSAHS: VMHC-based rs-fMRI study
NEXT Application of three-dimensional pseudo-continuous arterial spin labeling combined with automatic segmentation technology in hippocampal sclerotic medial temporal lobe epilepsy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn