Share:
Share this content in WeChat
X
Clinical Article
Changes of cerebrospinal fluid capacity in patients with lung cancer with or without chemotherapy and its clinical significance
ZHAO Qiuyue  LIANG Xue  RONG Ping  CHEN Wenqian  MA Yiming  HAN Xiaowei 

ZHAO Q Y, LIANG X, RONG P, et al. Changes of cerebrospinal fluid capacity in patients with lung cancer with or without chemotherapy and its clinical significance[J]. Chin J Magn Reson Imaging, 2023, 14(9): 33-38. DOI:10.12015/issn.1674-8034.2023.09.006.


[Abstract] Objective To explore the effects of lung cancer (LC) and chemotherapy on the total amount of intracranial cerebrospinal fluid (CSF) and the volume of CSF in various subregions in patients with LC by using both horizontal and vertical analysis methods.Materials and Methods In the horizontal study, 151 cases of patient with LC admitted to our hospital from May 2019 to December 2021 were retrospectively analyzed, of which 38 receivied chemotherapy. Meanwhile, 39 healthy controls (HC) were recruited. The differences of total CSF volume and CSF capacity in each subregion were compared among the three groups by one-way ANOVA. Then the correlations between the significantly different indicators and cancer-related clinical data in each group were carried out. In the longitudinal study, an additional 20 cases of LC patients admitted to our hospital between July 2020 and January 2022 were then retrospectively analyzed. The paired t-test method was used to compare the changes in CSF volume between the two times, and then, the correlation analyses were performed between the significantly different indexes and the follow-up interval.Results In the transverse study, the CSF volume in the third ventricle and right lateral ventricle of LC patients with chemotherapy and without chemotherapy were significantly higher than that of the HC group (P<0.05). And in the chemotherapy group, the tumor size was positively correlated with the CSF in the third ventricle (P<0.05). The longitudinal study showed that compared with the first brain scan, the volume of intracranial, peripheral and left lateral ventricle CSF in LC patients increased significantly after the second follow-up (P<0.05). And the CSF differences above were positively associated with the follow-up interval (P<0.05).Conclusions LC and chemotherapy lead to aberrant CSF volume in multiple ventricles,which may provide a new neuroimaging marker for LC diagnosis and assist in guiding cancer chemotherapy.
[Keywords] lung cancer;chemotherapy-related brain injury;cerebrospinal fluid;three-dimensional T1 weighted imaging;magnetic resonance imaging;cross-sectional study;longitudinal study

ZHAO Qiuyue   LIANG Xue   RONG Ping   CHEN Wenqian   MA Yiming   HAN Xiaowei*  

Department of Medical Imaging, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China

Corresponding author: Han XW, E-mail: hxw2002hxw@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82171908).
Received  2023-03-24
Accepted  2023-08-04
DOI: 10.12015/issn.1674-8034.2023.09.006
ZHAO Q Y, LIANG X, RONG P, et al. Changes of cerebrospinal fluid capacity in patients with lung cancer with or without chemotherapy and its clinical significance[J]. Chin J Magn Reson Imaging, 2023, 14(9): 33-38. DOI:10.12015/issn.1674-8034.2023.09.006.

[1]
BARTA J A, POWELL C A, Wisnivesky J P. Global epidemiology of lung cancer[J]. Ann Glob Health, 2019, 85(1): 1-16. DOI: 10.5334/aogh.2419.
[2]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30. DOI: 10.3322/caac.21332.
[3]
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
[4]
LEI J, YANG J, DONG L, et al. An exercise prescription for patients with lung cancer improves the quality of life, depression, and anxiety[J/OL]. Front Public Health, 2022, 10: 1050471 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714027. DOI: 10.3389/fpubh.2022.1050471.
[5]
HU L, DING S, ZHANG Y, et al. Dynamic functional network connectivity reveals the brain functional alterations in lung cancer patients after chemotherapy[J]. Brain Imaging Behav, 2021, 16(3): 1040-1048. DOI: 10.1007/s11682-021-00575-9.
[6]
PARK Y W, AN C, LEE J, et al. Diffusion tensor and postcontrast T1-weighted imaging radiomics to differentiate the epidermal growth factor receptor mutation status of brain metastases from non-small cell lung cancer[J]. Neuroradiology, 2021, 63(3): 343-352. DOI: 10.1007/s00234-020-02529-2.
[7]
MENTZELOPOULOS A, GKIATIS K, KARANASIOUS I, et al. Chemotherapy-Induced Brain Effects in Small-Cell Lung Cancer Patients: A Multimodal MRI Study[J]. Brain Topogr, 2021, 34(2): 167-181. DOI: 10.1007/s10548-020-00811-3.
[8]
LIU S, YIN N, MA R, et al. Abnormal topological characteristics of brain white matter network relate to cognitive and emotional deficits of non-small cell lung cancer (NSCLC) patients prior to chemotherapy[J]. Int J Neurosci, 2022, 132(4): 328-337. DOI: 10.1080/00207454.2020.1813130.
[9]
SIMÓ M, VAQUERO L, RIPOLLÉS P, et al. Brain damage following prophylactic cranial irradiation in lung cancer survivors[J]. Brain Imaging Behav, 2016, 10(1): 283-295. DOI: 10.1007/s11682-015-9393-5.
[10]
SIMO M, RIFA-ROS X, VAQUERO L, et al. Brain functional connectivity in lung cancer population: an exploratory study[J]. Brain Imaging Behav, 2018, 12(2): 369-382. DOI: 10.1007/s11682-017-9697-8.
[11]
LV P, MA G L, CHEN W Q, et al. Brain morphological alterations and their correlation to tumor differentiation and duration in patients with lung cancer after platinum chemotherapy[J/OL]. Front Oncol, 2022, 12: 903249 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396961. DOI: 10.3389/fonc.2022.903249.
[12]
DE M L, MAYOR R, NG C K Y, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma[J/OL]. Nat Commun, 2015, 6: 8839 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426516. DOI: 10.1038/ncomms9839.
[13]
MILLER A M, SHAN R H, PENTSOVA E I, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid[J]. Nature, 2019, 565(7741): 654-658. DOI: 10.1038/s41586-019-0882-3.
[14]
LI Y S, ZHENG M M, JIANG B Y, et al. Association of cerebrospinal fluid tumor DNA genotyping with survival among patients with lung adenocarcinoma and central nervous system metastases[J/OL]. JAMA Netw Open, 2020, 3(8): e209077 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403922. DOI: 10.1001/jamanetworkopen.2020.9077.
[15]
WANG W, ZHENG X, WANG H, et al. Development of an UPLC-MS/MS method for quantification of Avitinib (AC0010) and its five metabolites in human cerebrospinal fluid: application to a study of the blood-brain barrier penetration rate of non-small cell lung cancer patients[J/OL]. J Pharm Biomed Anal, 2017, 139: 205-214 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/28285073. DOI: 10.1016/j.jpba.2017.02.057.
[16]
CHINANG C L, HUANG H C, LUO Y H, et al. Cerebrospinal fluid as a medium of liquid biopsy in the management of patients with non-small-cell lung cancer having central nervous system metastasis[J]. Front Biosci (Landmark Ed), 2021, 26(12): 1679-1688. DOI: 10.52586/5060.
[17]
WANLEENUWAT P, IWANOWSKI P. Metastases to the central nervous system: Molecular basis and clinical considerations[J/OL]. J Neurol Sci, 2020, 412: 116755 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/32120132. DOI: 10.1016/j.jns.2020.116755.
[18]
KO Y, GWAK H S, PARK E Y, et al. Association of MRI findings with clinical characteristics and prognosis in patients with leptomeningeal carcinomatosis from non-small cell lung cancer[J]. J Neurooncol, 2019, 143(3): 553-562. DOI: 10.1007/s11060-019-03190-3.
[19]
ZHOU Y S, CUI Y, ZHENG J X, et al. Luteolin relieves lung cancer-induced bone pain by inhibiting NLRP3 inflammasomes and glial activation in the spinal dorsal horn in mice[J/OL]. Phytomedicine, 2022, 96: 153910 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/35026502. DOI: 10.1016/j.phymed.2021.153910.
[20]
MURUGESAN N, PAUL D, LEMIRE Y, et al. Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus[J]. Fluids Barriers CNS, 2012, 9(1): 15-30. DOI: 10.1186/2045-8118-9-15.
[21]
KOOIJ G, KOPPLIN K, BLASIG R, et al. Disturbed function of the blood-cerebrospinal fluid barrier aggravates neuro-inflammation[J]. Acta Neuropathol, 2014, 128(2): 267-277. DOI: 10.1007/s00401-013-1227-1.
[22]
ALTHUBAITY N, SCHUBERT J, MARTINS D, et al. Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression[J/OL]. Neuroimage Clin, 2022, 33: 102926 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718974. DOI: 10.1016/j.nicl.2021.102926.
[23]
FLEISCHER V, GONZALEZ-ESCAMILLA G, CIOLAC D, et al. Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans[J/OL]. Proc Natl Acad Sci U S A. 2021, 118(36): e2025000118 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433504. DOI: 10.1073/pnas.2025000118.
[24]
YAKIMOV V, SCHWEIGER F, ZHAN J, et al. Continuous cuprizone intoxication allows active experimental autoimmune encephalomyelitis induction in C57BL/6 mice[J]. Histochem Cell Biol, 2019, 152(2): 119-131. DOI: 10.1007/s00418-019-01786-4.
[25]
CAMPBELL G R, KRAYTSBERG Y, KRISHNAN K J, et al. Clonally expanded mitochondrial DNA deletions within the choroid plexus in multiple sclerosis[J]. Acta Neuropathol, 2012, 124(2): 209-220. DOI: 10.1007/s00401-012-1001-9.
[26]
MILLWARD J M, RAMOS-DELGADO P, SMORODCHENKO A, et al. Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis[J/OL]. JCI Insight, 2020, 5(21): e140040 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710287. DOI: 10.1172/jci.insight.140040.
[27]
KARIMY J K, REEVES B C, DAMISAH E, et al. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets[J]. Nat Rev Neurol, 2020, 16(5): 285-296. DOI: 10.1038/s41582-020-0321-y.
[28]
PACHMAnN D R, QIN R, SEISLER D, et al. Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505)[J]. Support Care Cancer, 2016, 24(12): 5059-5068. DOI: 10.1007/s00520-016-3373-1.
[29]
VETTER M H, SMRZ S, GEHRIG P A, et al. Pathologic and clinical tumor size discordance in early-stage cervical cancer: Does it matter?[J]. Gynecol Oncol, 2020, 159(2): 354-358. DOI: 10.1016/j.ygyno.2020.08.004.
[30]
WILLIAMSON S R, TANEGA K, CHENG L. Renal cell carcinoma staging: pitfalls, challenges, and updates[J]. Histopathology, 2019, 74(1): 18-30. DOI: 10.1111/his.13743.
[31]
TSUKIOKA T, IZUMI N, OMASTU H, et al. Tumor size and N2 lymph node metastasis are significant risk factors for early recurrence in completely resected centrally located primary lung cancer patients[J]. Anticancer Res, 2021, 41(4): 2165-2169. DOI: 10.21873/anticanres.14989.
[32]
SANTOS N, FERREIRA R S, SANTOS A C D. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents[J/OL]. Food Chem Toxicol, 2020, 136: 111079 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/31891754. DOI: 10.1016/j.fct.2019.111079.
[33]
HOEFFNER E G. Central nervous system complications of oncologic therapy[J]. Hematol Oncol Clin North Am, 2016, 30(4): 899-920. DOI: 10.1016/j.hoc.2016.03.010.
[34]
GEWANDTER J S, KLECKNER A S, MARSHALL J H, et al. Chemotherapy-induced peripheral neuropathy (CIPN) and its treatment: an NIH Collaboratory study of claims data[J]. Support Care Cancer, 2020, 28(6): 2553-2562. DOI: 10.1007/s00520-019-05063-x.
[35]
ZAJACZKOWSKA R, KOCOT-KEPSKA M, LEPPERT W, et al. Mechanisms of chemotherapy-induced peripheral neuropathy[J]. Int J Mol Sci, 2019, 20(6): 1451-1479. DOI: 10.3390/ijms20061451.
[36]
GPUTA P, MAKKAR T K, GOEL L, et al. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity[J]. Immunol Res, 2022, 70(6): 725-741. DOI: 10.1007/s12026-022-09307-7.
[37]
OSTROM Q T, WRIGHT C H, BARNHOLTZ-SLOAN J S. Brain metastases: epidemiology[J/OL]. Handb Clin Neurol, 2018, 149: 27-42 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/29307358. DOI: 10.1016/B978-0-12-811161-1.00002-5.
[38]
PENG J, MUNSON J M. Fluids and flows in brain cancer and neurological disorders[J/OL]. WIREs Mech Dis, 2023, 15(1): e1582 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869390. DOI: 10.1002/wsbm.1582.
[39]
MA C, YANG X, XING W, et al. Detection of circulating tumor DNA from non-small cell lung cancer brain metastasis in cerebrospinal fluid samples[J]. Thorac Cancer, 2020, 11(3): 588-593. DOI: 10.1111/1759-7714.13300.
[40]
RUAN H, HOU Y, SHEN J, et al. Circulating tumor cell characterization of lung cancer brain metastases in the cerebrospinal fluid through single-cell transcriptome analysis[J/OL]. Clin Transl Med, 2020, 10(8): e246 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737787. DOI: 10.1002/ctm2.246.
[41]
LI M C, CHEN J, ZHANG B S, et al. Dynamic monitoring of cerebrospinal fluid circulating tumor DNA to identify unique genetic profiles of brain metastatic tumors and better predict intracranial tumor responses in non-small cell lung cancer patients with brain metastases: a prospective cohort study (GASTO 1028)[J]. BMC Med, 2022, 20(1): 398-409. DOI: 10.1186/s12916-022-02595-8.

PREV Application of three-dimensional pseudo-continuous arterial spin labeling combined with automatic segmentation technology in hippocampal sclerotic medial temporal lobe epilepsy
NEXT White matter microstructural changes shortly after acute stress: A DTI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn