Share:
Share this content in WeChat
X
Clinical Article
Application value of mono- and bi-exponential model diffusion weighted imaging and arterial spin labeling in predicting short-term curative effect of recurrent nasopharyngeal carcinoma
LIU Teng  XIAO Lei  WEI Bo  LIAO Hai 

LIU T, XIAO L, WEI B, et al. Application value of mono- and bi-exponential model diffusion weighted imaging and arterial spin labeling in predicting short-term curative effect of recurrent nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(9): 63-69. DOI:10.12015/issn.1674-8034.2023.09.011.


[Abstract] Objective To investigate the potential value of mono- and bi-exponential model diffusion weighted imaging (DWI) and three dimensional pseudo-continuous arterial spin labeling (3DpCASL) in predicting the short-term curative effect of recurrent nasopharyngeal carcinoma.Materials and Methods A total of 34 patients with recurrent nasopharyngeal carcinoma who were treated in our hospital were prospectively enrolled. Before treatment, all patients underwent conventional MRI, traditional mono-exponential model DWI (b=0, 800 s/mm2) and intravoxel incoherent motion imaging (IVIM) bi-exponential model multi-b-value DWI and 3DpCASL examination, routine MRI examination after treatment. According to Response Evaluation Criteria in Solid Tumors (version 1.1), patients were divided into response group (complete response and partial response) and non-response group (stable disease and progression disease). The differences in apparent diffusion coefficient (ADC), slow diffusion coefficient (Dslow), fast diffusion coefficient (Dfast), perfusion fraction (f), tumor blood flow (TBF), and relative tumor blood flow (rTBF) values were compared between the two groups. Then, the tumor regression rate was calculated according to the regression of the target lesion before and after treatment, and the correlation between each parameter and the tumor regression rate was explored by Spearman correlation analysis. The area under curve of ROC was used to evaluate the diagnostic value of each parameter.Results The baseline ADC and Dslow value of the response group were significantly lower than those of the non-response group (P<0.001). The baseline TBF and rTBF values of the response group were significantly higher than those of the non-response group (P<0.001). The ADC and Dslow values before treatment were negatively correlated with the tumor regression rate, and the TBF and rTBF values before treatment were positively correlated with the tumor regression rate. ROC analysis showed that the AUC values of ADC, Dslow, TBF and rTBF for predicting the short-term curative effect of recurrent nasopharyngeal carcinoma were 0.944, 0.940, 0.765 and 0.779, respectively.Conclusions The mono- and bi-exponential model DWI and 3DpCASL parameters could accurately predict the short-term curative effect of recurrent nasopharyngeal carcinoma, especially ADC and Dslow have the best predictive performance, providing non-invasive technical means and effective quantification for the early and accurate prediction of the short-term curative effect of recurrent nasopharyngeal carcinoma index.
[Keywords] nasopharyngeal carcinoma;recurrence;efficacy prediction;diffusion-weighted imaging;intravoxel incoherent motion;arterial spin labeling;magnetic resonance imaging

LIU Teng   XIAO Lei   WEI Bo   LIAO Hai*  

Medical Imaging Center, Cancer Hospital Affiliated to Guangxi Medical University, Nanning 530021, China

Corresponding author: Liao H, E-mail: 42442427@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Guangxi Science and Technological Development Project (No. Guike AB23026018, Guike AD20238096); Natural Science Foundation of Guangxi Province (No. 2023GXNSFAA026249).
Received  2023-04-05
Accepted  2023-08-04
DOI: 10.12015/issn.1674-8034.2023.09.011
LIU T, XIAO L, WEI B, et al. Application value of mono- and bi-exponential model diffusion weighted imaging and arterial spin labeling in predicting short-term curative effect of recurrent nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(9): 63-69. DOI:10.12015/issn.1674-8034.2023.09.011.

[1]
KANG M. Radiotherapy guidelines for nasopharyngeal carcinoma in China (2020 edition)[J]. Chin J Cancer Prev Treat, 2021, 28(3): 167-177. DOI: 10.16073/j.cnki.cjcpt.2021.03.01.
[2]
WALLE T, MARTINEZ MONGE R, CERWENKA A, et al. Radiation effects on antitumor immune responses: current perspectives and challenges[J/OL]. Ther Adv Med Oncol, 2018, 10: 1758834017742575 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/29383033/. DOI: 10.1177/1758834017742575.
[3]
HUA Y J, YOU R, WANG Z Q, et al. Toripalimab plus intensity-modulated radiotherapy for recurrent nasopharyngeal carcinoma: an open-label single-arm, phase Ⅱ trial[J/OL]. J Immunother Cancer, 2021, 9(11): e003290 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/34782428/. DOI: 10.1136/jitc-2021-003290.
[4]
XIAO B H, WANG P G, ZHAO Y R, et al. Combination of diffusion-weighted imaging and arterial spin labeling at 3.0T for the clinical staging of nasopharyngeal carcinoma[J]. Clin Imaging, 2020, 66: 127-132. DOI: 10.1016/j.clinimag.2020.05.007.
[5]
SUN Z Q, HU S D, GE Y X, et al. Can arterial spin labeling perfusion imaging be used to differentiate nasopharyngeal carcinoma from nasopharyngeal lymphoma?[J]. J Magn Reson Imaging, 2021, 53(4): 1140-1148. DOI: 10.1002/jmri.27451.
[6]
YU X D, YANG F, LIU X, et al. Arterial spin labeling and diffusion-weighted imaging for identification of retropharyngeal lymph nodes in patients with nasopharyngeal carcinoma[J/OL]. Cancer Imaging, 2022, 22(1): 40 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/35978445/. DOI: 10.1186/s40644-022-00480-4.
[7]
ZHAO D W, FAN W J, MENG L L, et al. Comparison of the pre-treatment functional MRI metrics' efficacy in predicting Locoregionally advanced nasopharyngeal carcinoma response to induction chemotherapy[J/OL]. Cancer Imaging, 2021, 21(1): 59 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/34758876/. DOI: 10.1186/s40644-021-00428-0.
[8]
QIN Y H, CHEN C, CHEN H T, et al. The value of intravoxel incoherent motion model-based diffusion-weighted imaging for predicting long-term outcomes in nasopharyngeal carcinoma[J/OL]. Front Oncol, 2022, 12: 902819 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/36531009/. DOI: 10.3389/fonc.2022.902819.
[9]
BOUCHER F, LIAO E, SRINIVASAN A. Diffusion-weighted imaging of the head and neck (including temporal bone)[J]. Magn Reson Imaging Clin N Am, 2021, 29(2): 205-232. DOI: 10.1016/j.mric.2021.01.005.
[10]
SONG Q X, LI F, CHEN X, et al. Early detection treatment response for head and neck carcinomas using intravoxel incoherent motion-magnetic resonance imaging: a meta-analysis[J/OL]. Dentomaxillofac Radiol, 2021, 50(1): 20190507 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/32286860/. DOI: 10.1259/dmfr.20190507.
[11]
HU H B, JIANG H J, WANG S, et al. 3.0T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol, 2021, 46(1): 134-143. DOI: 10.1007/s00261-020-02594-4.
[12]
CHEN H R, YANG W R, LI Q R, et al. Study on cerebral perfusion changes in patients with Parkinson's disease with different motor subtypes by using arterial spin labeling technique[J]. Chin J Magn Reson Imag, 2021, 12(8): 1-5, 10. DOI: 10.12015/issn.1674-8034.2021.08.001.
[13]
HU F, ZHENG X H, LI T, et al. Brain perfusion abnormalities after radiotherapy measured by 3-dimensional arterial spin labeling MRI and correlations with cognitive impairment[J]. Radiat Res, 2022, 197(4): 324-331. DOI: 10.1667/RADE-21-00143.1.
[14]
SUN Z Q, HU S D, XUE Q, et al. Can 3D pseudo-continuous arterial spin labeling perfusion imaging be applied to predict early response to chemoradiotherapy in patients with advanced nasopharyngeal carcinoma?[J/OL]. Radiother Oncol, 2021, 160: 97-106 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/33951492/. DOI: 10.1016/j.radonc.2021.04.017.
[15]
LIU J, ZHU J, WANG Y X, et al. Arterial spin labeling of nasopharyngeal carcinoma shows early therapy response[J/OL]. Insights Imaging, 2022, 13(1): 114 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/35796807/. DOI: 10.1186/s13244-022-01248-x.
[16]
LIAO L P, LIU T, WEI B. Prediction of short-term treatment outcome of nasopharyngeal carcinoma based on voxel incoherent motion imaging and arterial spin labeling quantitative parameters[J/OL]. Eur J Radiol Open, 2022, 10: 100466 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/36590328/. DOI: 10.1016/j.ejro.2022.100466.
[17]
EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.1016/j.ejca.2008.10.026.
[18]
CHUNG S R, CHOI Y J, SUH C H, et al. Diffusion-weighted magnetic resonance imaging for predicting response to chemoradiation therapy for head and neck squamous cell carcinoma: a systematic review[J]. Korean J Radiol, 2019, 20(4): 649-661. DOI: 10.3348/kjr.2018.0446.
[19]
JABEHDAR MARALANI P, MYREHAUG S, MEHRABIAN H, et al. Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma[J/OL]. Radiother Oncol, 2021, 156: 258-265 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/29383033/. DOI: 10.1016/j.radonc.2020.12.037.
[20]
PAPRAD T, LERTBUTSAYANUKUL C, JITTAPIROMSAK N. Value of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for prediction of treatment outcomes in nasopharyngeal carcinoma[J]. J Comput Assist Tomogr, 2022, 46(4): 664-672. DOI: 10.1097/RCT.0000000000001304.
[21]
HUANG T X, LU N, LIAN S S, et al. The primary lesion apparent diffusion coefficient is a prognostic factor for locoregionally advanced nasopharyngeal carcinoma: a retrospective study[J/OL]. BMC Cancer, 2019, 19(1): 470 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/31101029/. DOI: 10.1186/s12885-019-5684-3.
[22]
GUO X H, KONG X L, TIAN X C, et al. Value of magnetic resonance diffusion-weighted imaging for the prediction of chemoradiotheray efficacy in nasopharyngeal carcinoma[J]. J Clin Radiol, 2017, 36(1): 28-33. DOI: 10.13437/j.cnki.jcr.2017.01.008.
[23]
LEE M K, CHOI Y, JUNG S L. Diffusion-weighted MRI for predicting treatment response in patients with nasopharyngeal carcinoma: a systematic review and meta-analysis[J/OL]. Sci Rep, 2021, 11(1): 18986 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/34556743/. DOI: 10.1038/s41598-021-98508-5.
[24]
WANG D J J, BIHAN D L, KRISHNAMURTHY R, et al. Noncontrast pediatric brain perfusion: arterial spin labeling and intravoxel incoherent motion[J]. Magn Reson Imaging Clin N Am, 2021, 29(4): 493-513. DOI: 10.1016/j.mric.2021.06.002.
[25]
QAMAR S, KING A D, AI Q H, et al. Pre-treatment intravoxel incoherent motion diffusion-weighted imaging predicts treatment outcome in nasopharyngeal carcinoma[J/OL]. Eur J Radiol, 2020, 129: 109127 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/32563165/. DOI: 10.1016/j.ejrad.2020.109127.
[26]
ZHANG H, LI W H, FU C X, et al. Comparison of intravoxel incoherent motion imaging, diffusion kurtosis imaging, and conventional DWI in predicting the chemotherapeutic response of colorectal liver metastases[J/OL]. Eur J Radiol, 2020, 130: 109149 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/32659615/. DOI: 10.1016/j.ejrad.2020.109149.
[27]
CHEN W B, ZHANG B, LIANG L, et al. To predict the radiosensitivity of nasopharyngeal carcinoma using intravoxel incoherent motion MRI at 3.0 T[J]. Oncotarget, 2017, 8(32): 53740-53750. DOI: 10.18632/oncotarget.17367.
[28]
HOU J, YU X P, HU Y, et al. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma[J/OL]. Medicine, 2016, 95(35): e4320 [2023-04-94].https://pubmed.ncbi.nlm.nih.gov/27583847/. DOI: 10.1097/MD.0000000000004320.
[29]
FEDERAU C, HAGMANN P, MAEDER P, et al. Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle[J/OL]. PLoS One, 2013, 8(8): e72856 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/24023649/. DOI: 10.1371/journal.pone.0072856.
[30]
LEMKE A, LAUN F B, SIMON D, et al. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen[J]. Magn Reson Med, 2010, 64(6): 1580-1585. DOI: 10.1002/mrm.22565.
[31]
DI N N, PANG H P, DANG X F, et al. Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies[J]. Neuroradiology, 2017, 59(1): 51-59. DOI: 10.1007/s00234-016-1756-0.
[32]
PANG H P, DANG X F, REN Y, et al. 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: comparison of quantitative perfusion and pathology on accurate spatial location-matched basis[J]. J Magn Reson Imaging, 2019, 50(1): 209-220. DOI: 10.1002/jmri.26562.
[33]
LIN M, YU X D, LUO D H, et al. Investigating the correlation of arterial spin labeling and dynamic contrast enhanced perfusion in primary tumor of nasopharyngeal carcinoma[J/OL]. Eur J Radiol, 2018, 108: 222-229 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/30396660/. DOI: 10.1016/j.ejrad.2018.09.034.

PREV Radiomics analysis based on IVIM-DWI quantitative parameters to predict the short-term therapeutic effect of nasopharyngeal carcinoma
NEXT Clinical value of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of small metastatic axillary lymph nodes in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn