Share:
Share this content in WeChat
X
Clinical Article
Clinical value of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of small metastatic axillary lymph nodes in breast cancer
JIANG Wei  DENG Hong  ZHANG Xiang  HE Shaoyun  ZHAO Yaqi  GAO Ming 

JIANG W, DENG H, ZHANG X, et al. Clinical value of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of small metastatic axillary lymph nodes in breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(9): 70-75, 80. DOI:10.12015/issn.1674-8034.2023.09.012.


[Abstract] Objective To investigate the clinical value of quantitative parameters of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in axillary small metastatic lymph nodes (SMLN) of breast cancer.Materials and Methods Eighty patients with pathologically confirmed breast cancer with axillary SMLN (SMLN group) and 55 patients with benign lymph nodes (BLN) (BLN group) were collected. Conventional MRI and IVIM-DWI sequence scans of bilateral breast and axilla were perform for all patients. The differences in IVIM-DWI parameters true diffusion coefficient (D), perfusion related diffusion coefficient (D*), perfusion fraction (f) and apparent diffusion coefficient (ADC) value between SMLN group and BLN group were analyzed and measured accurately. The double exponential nonlinear model parameters (D, D* and f values) and ADC values were drawn to distinguish the ROC curve between the SMLN group and the BLN group with benign breast lesions. The diagnostic effects of axillary SMLN group and axillary BLN in breast cancer were analyzed by area under curve (AUC).Results The D value (F=6.975, P<0.01), D* value (F=3.206, P<0.01) and ADC value (F=5.117, P<0.01) were significantly different, while the f value (F=-0.171, P>0.05) showed no significant difference between SMLN group and BLN group. D value and ADC value were significantly lower in SMLN group than that in BLN group (P<0.001), and D* value was significantly higher in SMLN group than that in BLN group (P=0.002). The AUC values of D, D*, ADC value and the ADC and D combined prediction probability were 0.817, 0.643, 0.734 and 0.833 for differentiating axillary SMLN of breast cancer from BLN of benign breast lesions, respectively. The diagnostic thresholds of D, D* and ADC value were 0.750×10-3 mm2/s, 17.500×10-3 mm2/s, and 0.836×10-3 mm2/s, respectively. The sensitivities were 81.8%, 52.7%, 78.2%, and the specificities were 80.0%, 75.0% and 61.3%, respectively.Conclusions The D value in the diagnosis of breast cancer axillary SMLN has a better diagnostic efficiency and is obviously better than ADC value, which has certain significance for the diagnosis of axillary SMLN.
[Keywords] breast cancer;magnetic resonance imaging;intravoxel incoherent motion;diffusion-weighted imaging;armpit;lymph node metastasis

JIANG Wei   DENG Hong   ZHANG Xiang   HE Shaoyun   ZHAO Yaqi   GAO Ming*  

Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China

Corresponding author: Gao M, E-mail: gaoming2@mail.sysu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Guangdong Province (No. 2021A1515010385).
Received  2022-09-04
Accepted  2023-07-21
DOI: 10.12015/issn.1674-8034.2023.09.012
JIANG W, DENG H, ZHANG X, et al. Clinical value of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of small metastatic axillary lymph nodes in breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(9): 70-75, 80. DOI:10.12015/issn.1674-8034.2023.09.012.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
[3]
India State-Level Disease Burden Initiative CRD Collaborators. The burden of chronic respiratory diseases and their heterogeneity across the states of India: the Global Burden of Disease Study1990-2016[J/OL]. Lancet Glob Health, 2018, 6(12): e1363-e1374 [2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/30219316/. DOI: 10.1016/S2214-109X(18)30409-1.
[4]
SWARNKAR P K, TAYEH S, MICHELL M J, et al. The evolving role of marked lymph node biopsy (MLNB) and targeted axillary dissection (TAD) after neoadjuvant chemotherapy (NACT) for node-positive breast cancer: systematic review and pooled analysis[J/OL]. Cancers, 2021, 13(7): 1539 [2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/33810544/. DOI: 10.3390/cancers13071539.
[5]
GIULIANO A E, BALLMAN K V, MCCALL L, et al. Effect of axillary dissection vs No axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (alliance) randomized clinical trial[J]. JAMA, 2017, 318(10): 918-926. DOI: 10.1001/jama.2017.11470.
[6]
MATTAR D, FILIPPO A D, INVENTO A, et al. Economic implications of ACOSOG Z0011 trial application into clinical practice at the European Institute of Oncology[J]. Eur J Surg Oncol, 2021, 47(10): 2499-2505. DOI: 10.1016/j.ejso.2021.06.016.
[7]
MATIKAS A, KOTSAKIS A, APOSTOLAKI S, et al. Detection of circulating tumour cells before and following adjuvant chemotherapy and long-term prognosis of early breast cancer[J]. Br J Cancer, 2022, 126(11): 1563-1569. DOI: 10.1038/s41416-022-01699-5.
[8]
WANG L, LI Y, LI J, et al. Computed tomography reconstruction for evaluating response in axillary lymph nodes of breast cancer after neoadjuvant chemotherapy[J]. Clin Transl Oncol, 2021, 23(2): 240-245. DOI: 10.1007/s12094-020-02411-w.
[9]
LUO N, WEN Y, ZOU Q Y, et al. Construction and validation of a risk prediction model for clinical axillary lymph node metastasis inT1-2 breast cancer[J/OL]. Sci Rep, 2022, 12: 687 [2022-09-03]. https://www.nature.com/articles/s41598-021-04495-y. DOI: 10.1038/s41598-021-04495-y.
[10]
BARCO I, CHABRERA C, GARCÍA-FERNÁNDEZ A, et al. Role of axillary ultrasound, magnetic resonance imaging, and ultrasound-guided fine-needle aspiration biopsy in the preoperative triage of breast cancer patients[J]. Clin Transl Oncol, 2017, 19(6): 704-710. DOI: 10.1007/s12094-016-1589-7.
[11]
KURT N, BINBOGA KURT B, GULSARAN U, et al. Diffusion tensor imaging and diffusion-weighted imaging on axillary lymph node status in breast cancer patients[J]. Diagn Interv Radiol, 2022, 28(4): 329-336. DOI: 10.5152/dir.2022.21460.
[12]
FU X W, CHEN Y Y, NI H Y. Principle and clinical application of various new MR diffusion imaging based on different models[J]. Chin J Radiol, 2017, 51(11): 883-886. DOI: 10.3760/cma.j.issn.10050?1201.2017.11.019.
[13]
ZHOU J, ZENG Y J, WANG Z, et al. Bi-exponential diffusion and diffusion kurtosis imaging in differential diagnosis of benign and malignant breast lesions[J]. Chin J Med Imag Technol, 2018, 34(10): 1514-1518. DOI: 10.13929/j.1003-3289.201803100.
[14]
MAO X J, ZOU X X, YU N, et al. Quantitative evaluation of intravoxel incoherent motion diffusion-weighted imaging (IVIM) for differential diagnosis and grading prediction of benign and malignant breast lesions[J/OL]. Medicine, 2018, 97(26): e11109 [2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/29952951/. DOI: 10.1097/MD.0000000000011109.
[15]
NOIJ D P, MARTENS R M, KOOPMAN T, et al. Use of diffusion-weighted imaging and 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography in the response assessment for (chemo)radiotherapy in head and neck squamous cell carcinoma[J]. Clin Oncol, 2018, 30(12): 780-792. DOI: 10.1016/j.clon.2018.09.007.
[16]
PAUDYAL R, KONAR A S, OBUCHOWSKI N A, et al. Repeatability of quantitative diffusion-weighted imaging metrics in phantoms, head-and-neck and thyroid cancers: preliminary findings[J]. Tomography, 2019, 5(1): 15-25. DOI: 10.18383/j.tom.2018.00044.
[17]
IIMA M, LE BIHAN D. Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future[J]. Radiology, 2016, 278(1): 13-32. DOI: 10.1148/radiol.2015150244.
[18]
ZHANG M, HORVAT J V, BERNARD-DAVILA B, et al. Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy[J]. J Magn Reson Imaging, 2019, 49(3): 864-874. DOI: 10.1002/jmri.26285.
[19]
RAZEK A A, LATTIF M A, DENEWER A, et al. Assessment of axillary lymph nodes in patients with breast cancer with diffusion-weighted MR imaging in combination with routine and dynamic contrast MR imaging[J]. Breast Cancer, 2016, 23(3): 525-532. DOI: 10.1007/s12282-015-0598-7.
[20]
HERRERO VICENT C, TUDELA X, MORENO RUIZ P, et al. Machine learning models and multiparametric magnetic resonance imaging for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer[J/OL]. Cancers, 2022, 14(14): 3508 [2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/35884572/. DOI: 10.3390/cancers14143508.
[21]
IIMA M, KATAOKA M, KANAO S, et al. Intravoxel incoherent motion and quantitative non-gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions[J]. Radiology, 2018, 287(2): 432-441. DOI: 10.1148/radiol.2017162853.
[22]
MA L, HE W, LIU J Y. Differentiation of avascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas using apparent diffusion mono-exponential model and intravoxel incoherent motion[J]. Chin J Med Imag, 2019, 27(7): 487-490. DOI: 10.3969/j.issn.1005-5185.2019.07.002.
[23]
ZHU S C, LIU Y H, WEI Y, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: comparison with conventional diffusion-weighted imaging[J]. World J Gastroenterol, 2018, 24(8): 929-940. DOI: 10.3748/wjg.v24.i8.929.
[24]
SUN H L, XU Y Y, XU Q Y, et al. Correlation between intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging parameters in rectal cancer[J/OL]. Acad Radiol, 2019, 26(7): e134-e140 [2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/30268719/. DOI: 10.1016/j.acra.2018.08.012.
[25]
CHE S N, CUI X L, LI J, et al. The value of intravoxel incoherent motion model of diffusion weighted imaging in differentiating benign from malignant breast lesions[J]. Chin J Magn Reson Imag, 2015, 6(7): 506-512. DOI: 10.3969/j.issn.1674-8034.2015.07.006.
[26]
ZHU Y Q, LI X B, WANG F K, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging in characterization of axillary lymph nodes: preliminary animal experience[J/OL]. Magn Reson Imag, 2018, 52: 46-52 [2022-09-03]. https://www.sciencedirect.com/science/article/abs/pii/S0730725X18301772?via%3Dihub. DOI: 10.1016/j.mri.2018.05.013.
[27]
KIM J Y, SEO H B, PARK S, et al. Early-stage invasive ductal carcinoma: association of tumor apparent diffusion coefficient values with axillary lymph node metastasis[J]. Eur J Radiol, 2015, 84(11): 2137-2143. DOI: 10.1016/j.ejrad.2015.08.009.
[28]
KVISTAD K A, RYDLAND J, SMETHURST H B, et al. Axillary lymph node metastases in breast cancer: preoperative detection with dynamic contrast-enhanced MRI[J]. Eur Radiol, 2000, 10(9): 1464-1471. DOI: 10.1007/s003300000370.
[29]
LIANG J Y, ZENG S H, LI Z P, et al. Intravoxel incoherent motion diffusion-weighted imaging for quantitative differentiation of breast tumors: a meta-analysis[J/OL]. Front Oncol, 2020, 10: 585486 [2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/33194733/. DOI: 10.3389/fonc.2020.585486.
[30]
JIANG J, CHEN Y Q, LI W Y, et al. Ultrasonography in the preoperative evaluation of axillary lymph nodes in the patients with breast cancer[J/OL]. Chin J Med Ultrasound Electron Version, 2011, 8(6): 1234-1240 [2022-09-03]. https://d.wanfangdata.com.cn/periodical/zhyxcszz201106007. DOI: 10.3877/cma.j.issn.1672-6448.2011.06.010.
[31]
WILKE L G, MCCALL L M, POSTHER K E, et al. Surgical complications associated with sentinel lymph node biopsy: results from a prospective international cooperative group trial[J]. Ann Surg Oncol, 2006, 13(4): 491-500. DOI: 10.1245/ASO.2006.05.013.
[32]
WU Q X, WANG S, CHEN X, et al. Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer[J/OL]. Radiother Oncol, 2019, 138: 141-148 [2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/31252296/. DOI: 10.1016/j.radonc.2019.04.035.
[33]
HUANG B X, FANG F. Progress in the study of lymph node metastasis in early-stage cervical cancer[J]. Curr Med Sci, 2018, 38(4): 567-574. DOI: 10.1007/s11596-018-1915-0.
[34]
TAO G M, WU H L. Value of quantitative parameters of dynamic enhanced magnetic resonance and IVIM in assessing axillary lymph node metastasis in breast cancer[J]. Jiangxi Sci, 2019, 37(2): 198-202. DOI: 10.13990/j.issn1001-3679.2019.02.011.

PREV Application value of mono- and bi-exponential model diffusion weighted imaging and arterial spin labeling in predicting short-term curative effect of recurrent nasopharyngeal carcinoma
NEXT Correlation between radiomics features on T2WI sequences and clinical features of recurrent acute pancreatitis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn