Share:
Share this content in WeChat
X
Review
Research progress on neuroimaging biomarkers of cognitive impairment in patients with type 2 diabetes
MEI Leilei  ZHANG Manman  YANG Hongkai  LUO Xiao  HE Yongsheng 

MEI L L, ZHANG M M, YANG H K, et al. Research progress on neuroimaging biomarkers of cognitive impairment in patients with type 2 diabetes[J]. Chin J Magn Reson Imaging, 2023, 14(9): 108-113. DOI:10.12015/issn.1674-8034.2023.09.020.


[Abstract] The onset of cognitive dysfunction associated with type 2 diabetes mellitus (T2DM) is insidious, and the specific mechanism remains unclear. Structural MRI can objectively measure brain volume and cortical morphological changes; diffusion weighted imaging can accurately track nerve fibers; quantitative susceptibility mapping can quantify the abnormal iron deposition in living tissues. Graph theory analysis can reflect the information processing efficiency of brain network; neurovascular coupling analysis can detect neurovascular injury; machine learning can build reliable diagnostic or predictive models. At present, the combination of multimodal MRI and advanced neuroimaging analysis theory has gradually become a powerful tool for clinical research on the mechanism of cognitive impairment in T2DM. The article reviewed the progress of multimodal MRI in the study of neuroimaging biomarkers of cognitive dysfunction in T2DM, in order to provide imaging evidence for revealing its neurophysiological mechanism and early diagnosis.
[Keywords] type 2 diabetes mellitus;cognitive impairment;neuroimaging biomarkers;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;diffusion tensor imaging

MEI Leilei   ZHANG Manman   YANG Hongkai   LUO Xiao   HE Yongsheng*  

Department of Radiology, Maanshan People's Hospital, Ma'anshan 243000, China

Corresponding author: He YS, E-mail: heyongsheng881@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Science and Technology Project of Ma'anshan City (No. YL-2022-2).
Received  2023-03-08
Accepted  2023-07-27
DOI: 10.12015/issn.1674-8034.2023.09.020
MEI L L, ZHANG M M, YANG H K, et al. Research progress on neuroimaging biomarkers of cognitive impairment in patients with type 2 diabetes[J]. Chin J Magn Reson Imaging, 2023, 14(9): 108-113. DOI:10.12015/issn.1674-8034.2023.09.020.

[1]
LIU H, HOU X G, CHEN L. Research progress on the mechanism of cognitive dysfunction in patients with type 2 diabetes[J]. Chin J Diabetes Mellit, 2021, 13(7): 737-739. DOI: 10.3760/cma.j.cn115791-20200816-00514.
[2]
Chinese Society of Endocrinology, The Blood Pressure Control Target in Diabetes (BPROAD) Research Group. Chinese expert consensus on the prevention and management of cognitive impairment in patients with type 2 diabetes mellitus[J]. Chin J Endocrinol Metab, 2022, 38(6): 453-464. DOI: 10.3760/cma.j.cn311282-20220518-00320.
[3]
KULLMANN S, KLEINRIDDERS A, SMALL D M, et al. Central nervous pathways of insulin action in the control of metabolism and food intake[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 524-534. DOI: 10.1016/S2213-8587(20)30113-3.
[4]
CUI D, LIU X F, LIU M M, et al. Subcortical gray matter structural alterations in prediabetes and type 2 diabetes[J]. Neuroreport, 2019, 30(6): 441-445. DOI: 10.1097/WNR.0000000000001224.
[5]
LI R S, HAN X L, HUA M Y, et al. Advances in magnetic resonance imaging studies in patients with cognitive impairment in type 2 diabetes mellitus[J]. Chin J Magn Reson Imag, 2022, 13(2): 108-111, 115. DOI: 10.12015/issn.1674-8034.2022.02.026.
[6]
ZHANG T Q, SHAW M, CHERBUIN N. Association between type 2 diabetes mellitus and brain atrophy: a meta-analysis[J]. Diabetes Metab J, 2022, 46(5): 815-816. DOI: 10.4093/dmj.2022.0296.
[7]
SMALL S A, SCHOBEL S A, BUXTON R B, et al. A pathophysiological framework of hippocampal dysfunction in ageing and disease[J]. Nat Rev Neurosci, 2011, 12(10): 585-601. DOI: 10.1038/nrn3085.
[8]
LI M, LI Y, LIU Y, et al. Altered Hippocampal Subfields Volumes Is Associated With Memory Function in Type 2 Diabetes Mellitus[J/OL]. Front Neurol, 2021, 12: 756500 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/34899576/. DOI: 10.3389/fneur.2021.756500.
[9]
LI M C, HUANG L L, YANG D, et al. Atrophy patterns of hippocampal subfields in T2DM patients with cognitive impairment[J]. Endocrine, 2020, 68(3): 536-548. DOI: 10.1007/s12020-020-02249-w.
[10]
ZHANG W, GAO C L, QING Z, et al. Hippocampal subfields atrophy contribute more to cognitive impairment in middle-aged patients with type 2 diabetes rather than microvascular lesions[J]. Acta Diabetol, 2021, 58(8): 1023-1033. DOI: 10.1007/s00592-020-01670-x.
[11]
CHENG T, HUANG X H, KUANG J, et al. Research progress of surface-based morphometry in the central nervous system[J]. Int J Med Radiol, 2020, 43(1): 35-40. DOI: 10.19300/j.2020.Z17460.
[12]
CHEN Z Y, ZANG X J, LIU M Q, et al. Abnormal alterations of cortical thickness in 16 patients with type 2 diabetes mellitus: a pilot MRI study[J]. Chung Kuo I Hsueh K'o Hsueh Tsa Chih, 2017, 32(2): 75-72. DOI: 10.24920/J1001-9294.2017.010.
[13]
PENG B, CHEN Z Y, MA L, et al. Cerebral alterations of type 2 diabetes mellitus on MRI: a pilot study[J/OL]. Neurosci Lett, 2015, 606: 100-105 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/26306652/. DOI: 10.1016/j.neulet.2015.08.030.
[14]
KANG S, CHEN Y, WU J, et al. Altered cortical thickness, degree centrality, and functional connectivity in middle-age type 2 diabetes mellitus[J/OL]. Front Neurol, 2022, 13: 939318 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/36408505/. DOI: 10.3389/fneur.2022.939318.
[15]
LI C, LI C, YANG Q, et al. Cortical thickness contributes to cognitive heterogeneity in patients with type 2 diabetes mellitus[J/OL]. Medicine (Baltimore), 2018, 97(21): e10858 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/29794784/. DOI: 10.1097/md.0000000000010858.
[16]
HOWES O D, CUMMINGS C, CHAPMAN G E, et al. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes[J]. Neuropsychopharmacology, 2023, 48(1): 151-167. DOI: 10.1038/s41386-022-01426-x.
[17]
CRISÓSTOMO J, DUARTE J V, MORENO C, et al. A novel morphometric signature of brain alterations in type 2 diabetes: patterns of changed cortical gyrification[J]. Eur J Neurosci, 2021, 54(6): 6322-6333. DOI: 10.1111/ejn.15424.
[18]
SHAO P, LI X, QIN R, et al. Altered local gyrification and functional connectivity in type 2 diabetes mellitus patients with mild cognitive impairment: A pilot cross-sectional small-scale single center study[J/OL]. Front Aging Neurosci, 2022, 14: 934071 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/36204559/. DOI: 10.3389/fnagi.2022.934071.
[19]
DOTY R L. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate?[J]. Lancet Neurol, 2017, 16(6): 478-488. DOI: 10.1016/S1474-4422(17)30123-0.
[20]
ZHANG Z, ZHANG B, WANG X, et al. Altered odor-induced brain activity as an early manifestation of cognitive decline in patients with type 2 diabetes[J]. Diabetes, 2018, 67(5): 994-1006. DOI: 10.2337/db17-1274.
[21]
ZHANG Z, ZHANG B, WANG X, et al. Olfactory dysfunction mediates adiposity in cognitive impairment of type 2 diabetes: insights from clinical and functional neuroimaging studies[J]. Diabetes Care, 2019, 42(7): 1274-1283. DOI: 10.2337/dc18-2584.
[22]
CHEN M, WANG J, ZHOU S, et al. Brain Structure as a Correlate of Odor Identification and Cognition in Type 2 Diabetes[J/OL]. Front Hum Neurosci, 2022, 16: 773309 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/35237139/. DOI: 10.3389/fnhum.2022.773309.
[23]
ZHOU J B, TANG X Y, HAN Y P, et al. Prediabetes and structural brain abnormalities: Evidence from observational studies[J/OL]. Diabetes Metab Res Rev, 2020, 36(4): e3261 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/31856401/. DOI: 10.1002/dmrr.3261.
[24]
LIANG M J, CAI X Y, TANG Y, et al. Diffusion tensor imaging of white matter in patients with prediabetes by trace-based spatial statistics[J]. J Magn Reson Imaging, 2019, 49(4): 1105-1112. DOI: 10.1002/jmri.26290.
[25]
JING J, ZHOU Y, PAN Y, et al. Reduced white matter microstructural integrity in prediabetes and diabetes: A population-based study[J/OL]. EBioMedicine, 2022, 82: 104144 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/35810560/. DOI: 10.1016/j.ebiom.2022.104144.
[26]
VERGOOSSEN L W, SCHRAM M T, DE JONG J J, et al. White matter connectivity abnormalities in prediabetes and type 2 diabetes: the maastricht study[J]. Diabetes Care, 2020, 43(1): 201-208. DOI: 10.2337/dc19-0762.
[27]
ZHANG Y, CAO Y J, XIE Y J, et al. Altered brain structural topological properties in type 2 diabetes mellitus patients without complications[J]. J Diabetes, 2019, 11(2): 129-138. DOI: 10.1111/1753-0407.12826.
[28]
XIONG Y, TIAN T, FAN Y, et al. Diffusion tensor imaging reveals altered topological efficiency of structural networks in type-2 diabetes patients with and without mild cognitive impairment[J]. J Magn Reson Imaging, 2022, 55(3): 917-927. DOI: 10.1002/jmri.27884.
[29]
LI C, ZHANG J, QIU M, et al. Alterations of Brain Structural Network Connectivity in Type 2 Diabetes Mellitus Patients With Mild Cognitive Impairment[J/OL]. Front Aging Neurosci, 2020, 12: 615048 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33613263/. DOI: 10.3389/fnagi.2020.615048.
[30]
ZHANG Q, XIAO Y, LIN L, et al. Diffusion spectrum imaging in white matter microstructure in subjects with type 2 diabetes[J/OL]. PLoS One, 2018, 13(11): e0203271 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/30427838/. DOI: 10.1371/journal.pone.0203271.
[31]
HOOGENBOOM W S, MARDER T J, FLORES V L, et al. Cerebral white matter integrity and resting-state functional connectivity in middle-aged patients with type 2 diabetes[J]. Diabetes, 2014, 63(2): 728-738. DOI: 10.2337/db13-1219.
[32]
XIONG Y, ZHANG S Q, SHI J J, et al. Application of neurite orientation dispersion and density imaging to characterize brain microstructural abnormalities in type-2 diabetics with mild cognitive impairment[J]. J Magn Reson Imaging, 2019, 50(3): 889-898. DOI: 10.1002/jmri.26687.
[33]
HUANG H, MA X, YUE X, et al. White Matter Characteristics of Damage Along Fiber Tracts in Patients with Type 2 Diabetes Mellitus[J/OL]. Clin Neuroradiol, 2022 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/36112176/. DOI: 10.1007/s00062-022-01213-7.
[34]
LIU J, LI Y, YANG X, et al. Regional Spontaneous Neural Activity Alterations in Type 2 Diabetes Mellitus: A Meta-Analysis of Resting-State Functional MRI Studies[J/OL]. Frontiers In Aging Neuroscience, 2021, 13: 678359 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/34220486/. DOI: 10.3389/fnagi.2021.678359.
[35]
XIA W Q, CHEN Y C, LUO Y, et al. Alterations in effective connectivity within the Papez circuit are correlated with insulin resistance in T2DM patients without mild cognitive impairment[J]. Brain Imaging Behav, 2020, 14(4): 1238-1246. DOI: 10.1007/s11682-019-00049-z.
[36]
ZHANG D, QI F, GAO J, et al. Altered Cerebellar-Cerebral Circuits in Patients With Type 2 Diabetes Mellitus[J/OL]. Front Neurosci, 2020, 14: 571210 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33071743/. DOI: 10.3389/fnins.2020.571210.
[37]
DENG L L, LIU H S, LIU H H, et al. Concomitant functional impairment and reorganization in the linkage between the cerebellum and default mode network in patients with type 2 diabetes mellitus[J]. Quant Imaging Med Surg, 2021, 11(10): 4310-4320. DOI: 10.21037/qims-21-41.
[38]
LEI Y, ZHANG D, QI F, et al. Dysfunctional Interaction Between the Dorsal Attention Network and the Default Mode Network in Patients With Type 2 Diabetes Mellitus[J/OL]. Front Hum Neurosci, 2021, 15: 796386 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/35002661/. DOI: 10.3389/fnhum.2021.796386.
[39]
ZHANG Q H, TAN Y. MRI quantitative susceptibility mapping: research advances in central nervous system[J]. Chin J Magn Reson Imag, 2022, 13(1): 151-153, 170. DOI: 10.12015/issn.1674-8034.2022.01.035.
[40]
YANG Q F, ZHOU L N, LIU C, et al. Brain iron deposition in type 2 diabetes mellitus with and without mild cognitive impairment-an in vivo susceptibility mapping study[J]. Brain Imaging Behav, 2018, 12(5): 1479-1487. DOI: 10.1007/s11682-017-9815-7.
[41]
LI J, ZHANG Q, ZHANG N, et al. Increased Brain Iron Deposition in the Putamen in Patients with Type 2 Diabetes Mellitus Detected by Quantitative Susceptibility Mapping[J/OL]. J Diabetes Res, 2020, 2020: 7242530 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33062715/. DOI: 10.1155/2020/7242530.
[42]
LI J, ZHANG Q, ZHANG N, et al. Increased Brain Iron Detection by Voxel-Based Quantitative Susceptibility Mapping in Type 2 Diabetes Mellitus Patients With an Executive Function Decline[J/OL]. Front Neurosci, 2020, 14: 606182 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33519360/. DOI: 10.3389/fnins.2020.606182.
[43]
BARLOESE M C J, BAUER C, PETERSEN E T, et al. Neurovascular Coupling in Type 2 Diabetes With Cognitive Decline. A Narrative Review of Neuroimaging Findings and Their Pathophysiological Implications[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 874007 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/35860697/. DOI: 10.3389/fendo.2022.874007.
[44]
HU B, YAN L F, SUN Q, et al. Disturbed neurovascular coupling in type 2 diabetes mellitus patients: Evidence from a comprehensive fMRI analysis[J/OL]. Neuroimage Clin, 2019, 22: 101802 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/30991623/. DOI: 10.1016/j.nicl.2019.101802.
[45]
YU Y, YAN L F, SUN Q, et al. Neurovascular decoupling in type 2 diabetes mellitus without mild cognitive impairment: potential biomarker for early cognitive impairment[J/OL]. Neuroimage, 2019, 200: 644-658 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/31252056/. DOI: 10.1016/j.neuroimage.2019.06.058.
[46]
CANNA A, ESPOSITO F, TEDESCHI G, et al. Neurovascular coupling in patients with type 2 diabetes mellitus[J/OL]. Front Aging Neurosci, 2022, 14: 976340 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/36118711/. DOI: 10.3389/fnagi.2022.976340.
[47]
ZHANG Y, ZHANG X, MA G, et al. Neurovascular coupling alterations in type 2 diabetes: a 5-year longitudinal MRI study[J/OL]. BMJ Open Diabetes Res Care, 2021, 9(1) [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/33462074/. DOI: 10.1136/bmjdrc-2020-001433.
[48]
AN X W, ZHOU Y T, DI Y, et al. Review of functional magnetic resonance imaging in diagnosis of mild cognitive impairment[J]. Chin J Biomed Eng, 2022, 41(1): 100-107. DOI: 10.3969/j.issn.0258-8021.2022.01.011.
[49]
TAN X, WU J, MA X, et al. Convolutional Neural Networks for Classification of T2DM Cognitive Impairment Based on Whole Brain Structural Features[J/OL]. Frontiers In Neuroscience, 2022, 16: 926486 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/35928014/. DOI: 10.3389/fnins.2022.926486.
[50]
WANG J, MA L, LIU G, et al. Tractography in Type 2 Diabetes Mellitus With Subjective Memory Complaints: A Diffusion Tensor Imaging Study[J/OL]. Front Neurosci, 2021, 15: 800420 [2023-03-07]. https://pubmed.ncbi.nlm.nih.gov/35462734/. DOI: 10.3389/fnins.2021.800420.
[51]
LIU Z Y, LIU J G, YUAN H J, et al. Identification of cognitive dysfunction in patients with T2DM using whole brain functional connectivity[J]. Genomics Proteomics Bioinformatics, 2019, 17(4): 441-452. DOI: 10.1016/j.gpb.2019.09.002.
[52]
SHI A P, YU Y, HU B, et al. Large-scale functional connectivity predicts cognitive impairment related to type 2 diabetes mellitus[J]. World J Diabetes, 2022, 13(2): 110-125. DOI: 10.4239/wjd.v13.i2.110.

PREV Application of fMRI in the study of central mechanism of acupuncture and moxibustion in the treatment of depression
NEXT Research progress of quantitative susceptibility mapping in cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn