Share:
Share this content in WeChat
X
Review
Research progress of quantitative susceptibility mapping in cognitive impairment
ZHANG Jinbiao  ZHANG Fengxiang  GAO Jialu 

ZHANG J B, ZHANG F X, GAO J L. Research progress of quantitative susceptibility mapping in cognitive impairment[J]. Chin J Magn Reson Imaging, 2023, 14(9): 114-118, 130. DOI:10.12015/issn.1674-8034.2023.09.021.


[Abstract] Cognitive impairment is caused by various diseases, and previous studies have shown a certain correlation between abnormal iron deposition in the brain and cognitive impairment. Quantitative susceptibility mapping (QSM) is a new imaging technique that can quantitatively detect magnetic substances in tissues, providing a feasible method for studying the correlation between cognitive impairment and iron deposition in the brain caused by Alzheimer's disease, Parkinson's disease, Diabetes mellitus type 2, vascular cognitive impairment and other diseases. This article provided a review of the latest research progress on QSM technology and cognitive impairment in recent years. It analyzed the application value of QSM technology in the study of cognitive impairment from the aspects of the etiology of cognitive impairment, corresponding brain iron deposition sites, and imaging related manifestations. The aim is to provide objective imaging basis for non-invasive assessment of patient progress and formulation of treatment plans in the early stage.
[Keywords] cognitive dysfunction;iron deposition;magnetic resonance imaging;quantitative susceptibility mapping;Alzheimer's disease;Parkinson's disease;diabetes mellitus

ZHANG Jinbiao1   ZHANG Fengxiang2*   GAO Jialu1  

1 Ordos School of Clinical Medicine, Inner Mongolia Medical University, Hohhot 010100, China

2 Department of Medical Imaging, Ordos Central Hospital, Ordos 017000, China

Corresponding author: Zhang FX, E-mail: zc890308@sina.com

Conflicts of interest   None.

Received  2023-04-08
Accepted  2023-07-21
DOI: 10.12015/issn.1674-8034.2023.09.021
ZHANG J B, ZHANG F X, GAO J L. Research progress of quantitative susceptibility mapping in cognitive impairment[J]. Chin J Magn Reson Imaging, 2023, 14(9): 114-118, 130. DOI:10.12015/issn.1674-8034.2023.09.021.

[1]
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
[2]
URRUTIA P J, BÓRQUEZ D A, NÚÑEZ M T. Inflaming the brain with iron[J/OL]. Antioxidants, 2021, 10(1): 61 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/33419006/. DOI: 10.3390/antiox10010061.
[3]
XU Y, ZHANG Y T, ZHANG J H, et al. Astrocyte hepcidin ameliorates neuronal loss through attenuating brain iron deposition and oxidative stress in APP/PS1 mice[J/OL]. Free Radic Biol Med, 2020, 158: 84-95 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/32707154/. DOI: 10.1016/j.freeradbiomed.2020.07.012.
[4]
ZHOU B R, LIU J, KANG R, et al. Ferroptosis is a type of autophagy-dependent cell death[J/OL]. Semin Cancer Biol, 2020, 66: 89-100 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/30880243/. DOI: 10.1016/j.semcancer.2019.03.002.
[5]
VINAYAGAMANI S, SHEELAKUMARI R, SABARISH S, et al. Quantitative susceptibility mapping: technical considerations and clinical applications in neuroimaging[J]. J Magn Reson Imaging, 2021, 53(1): 23-37. DOI: 10.1002/jmri.27058.
[6]
POLAK D, CHATNUNTAWECH I, YOON J, et al. Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM)[J/OL]. NMR Biomed, 2020, 33(12): e4271 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/32078756/. DOI: 10.1002/nbm.4271.
[7]
ZATTA P, DRAGO D, BOLOGNIN S, et al. Alzheimer's disease, metal ions and metal homeostatic therapy[J]. Trends Pharmacol Sci, 2009, 30(7): 346-355. DOI: 10.1016/j.tips.2009.05.002.
[8]
AYTON S, LEI P, BUSH A I. Metallostasis in Alzheimer's disease[J/OL]. Free Radic Biol Med, 2013, 62: 76-89 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/23142767/. DOI: 10.1016/j.freeradbiomed.2012.10.558.
[9]
COGSWELL P M, WISTE H J, SENJEM M L, et al. Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers[J/OL]. Neuroimage, 2021, 224: 117433 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/33035667/. DOI: 10.1016/j.neuroimage.2020.117433.
[10]
AYTON S, FAZLOLLAHI A, BOURGEAT P, et al. Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline[J]. Brain, 2017, 140(8): 2112-2119. DOI: 10.1093/brain/awx137.
[11]
DU L, ZHAO Z F, CUI A L, et al. Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer's disease[J]. ACS Chem Neurosci, 2018, 9(7): 1849-1857. DOI: 10.1021/acschemneuro.8b00194.
[12]
YANG A C, DU L, GAO W W, et al. Associations of cortical iron accumulation with cognition and cerebral atrophy in Alzheimer's disease[J]. Quant Imaging Med Surg, 2022, 12(9): 4570-4586. DOI: 10.21037/qims-22-7.
[13]
BULK M, KENKHUIS B, VAN DER GRAAF L M, et al. Postmortem T2*-weighted MRI imaging of cortical iron reflects severity of Alzheimer's disease[J]. J Alzheimers Dis, 2018, 65(4): 1125-1137. DOI: 10.3233/JAD-180317.
[14]
TIEPOLT S, SCHÄFER A, RULLMANN M, et al. Quantitative susceptibility mapping of amyloid-β aggregates in Alzheimer's disease with 7T MR[J]. J Alzheimers Dis, 2018, 64(2): 393-404. DOI: 10.3233/JAD-180118.
[15]
ABEYAWARDHANE D L, LUCAS H R. Iron redox chemistry and implications in the Parkinson's disease brain[J/OL]. Oxid Med Cell Longev, 2019, 2019: 4609702 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/31687080/. DOI: 10.1155/2019/4609702.
[16]
ABEYAWARDHANE D L, FERNÁNDEZ R D, MURGAS C J, et al. Iron redox chemistry promotes antiparallel oligomerization of α-synuclein[J]. J Am Chem Soc, 2018, 140(15): 5028-5032. DOI: 10.1021/jacs.8b02013.
[17]
LI K R, AVECILLAS-CHASIN J, NGUYEN T D, et al. Quantitative evaluation of brain iron accumulation in different stages of Parkinson's disease[J]. J Neuroimaging, 2022, 32(2): 363-371. DOI: 10.1111/jon.12957.
[18]
DEVOS D, LABREUCHE J, RASCOL O, et al. Trial of deferiprone in Parkinson's disease[J]. N Engl J Med, 2022, 387(22): 2045-2055. DOI: 10.1056/NEJMoa2209254.
[19]
RYAN S K, ZELIC M, HAN Y N, et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration[J]. Nat Neurosci, 2023, 26(1): 12-26. DOI: 10.1038/s41593-022-01221-3.
[20]
YANG L, CHENG Y, SUN Y Y, et al. Combined application of quantitative susceptibility mapping and diffusion kurtosis imaging techniques to investigate the effect of iron deposition on microstructural changes in the brain in Parkinson's disease[J/OL]. Front Aging Neurosci, 2022, 14: 792778 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/35370619/. DOI: 10.3389/fnagi.2022.792778.
[21]
ROST N S, BRODTMANN A, PASE M P, et al. Post-stroke cognitive impairment and dementia[J]. Circ Res, 2022, 130(8): 1252-1271. DOI: 10.1161/CIRCRESAHA.122.319951.
[22]
LI Y X, HE Y S, GUAN Q, et al. Disrupted iron metabolism and ensuing oxidative stress may mediate cognitive dysfunction induced by chronic cerebral hypoperfusion[J]. Biol Trace Elem Res, 2012, 150(1/2/3): 242-248. DOI: 10.1007/s12011-012-9455-0.
[23]
SUN Y W, GE X, HAN X, et al. Characterizing brain iron deposition in patients with subcortical vascular mild cognitive impairment using quantitative susceptibility mapping: a potential biomarker[J/OL]. Front Aging Neurosci, 2017, 9: 81 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/28424610/. DOI: 10.3389/fnagi.2017.00081.
[24]
WARDLAW J M, SMITH C, DICHGANS M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7): 684-696. DOI: 10.1016/S1474-4422(19)30079-1.
[25]
LI J, NGUYEN T D, ZHANG Q H, et al. Cerebral microbleeds are associated with increased brain iron and cognitive impairment in patients with cerebral small vessel disease: a quantitative susceptibility mapping study[J]. J Magn Reson Imaging, 2022, 56(3): 904-914. DOI: 10.1002/jmri.28092.
[26]
Endocrinology Branch of Chinese Medical Association. Expert consensus on diabetic cognitive dysfunction[J]. Chin J Diabetes Mellit, 2021, 13(7): 678-694. DOI: 10.3760/cma.j.cn115791-20210527-00291.
[27]
EHTEWISH H, ARREDOUANI A, EL-AGNAF O. Diagnostic, prognostic, and mechanistic biomarkers of diabetes mellitus-associated cognitive decline[J/OL]. Int J Mol Sci, 2022, 23(11): 6144 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/35682821/. DOI: 10.3390/ijms23116144.
[28]
AN J R, SU J N, SUN G Y, et al. Liraglutide alleviates cognitive deficit in db/db mice: involvement in oxidative stress, iron overload, and ferroptosis[J]. Neurochem Res, 2022, 47(2): 279-294. DOI: 10.1007/s11064-021-03442-7.
[29]
LIU J, HU X F, XUE Y, et al. Targeting hepcidin improves cognitive impairment and reduces iron deposition in a diabetic rat model[J]. Am J Transl Res, 2020, 12(8): 4830-4839.
[30]
LI J, ZHANG Q H, ZHANG N, et al. Increased brain iron detection by voxel-based quantitative susceptibility mapping in type 2 diabetes mellitus patients with an executive function decline[J/OL]. Front Neurosci, 2020, 14: 606182 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/33519360/. DOI: 10.3389/fnins.2020.606182.
[31]
FAZL A, FLEISHER J. Anatomy, physiology, and clinical syndromes of the basal Ganglia: a brief review[J/OL]. Semin Pediatr Neurol, 2018, 25: 2-9 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/29735113/. DOI: 10.1016/j.spen.2017.12.005.
[32]
MASZKA P, KWASNIAK-BUTOWSKA M, CYSEWSKI D, et al. Metabolomic footprint of disrupted energetics and amino acid metabolism in neurodegenerative diseases: perspectives for early diagnosis and monitoring of therapy[J/OL]. Metabolites, 2023, 13(3): 369 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/36984809/. DOI: 10.3390/metabo13030369.
[33]
MARTINEZ-HORTA S, SAMPEDRO F, HORTA-BARBA A, et al. Structural brain correlates of dementia in Huntington's disease[J/OL]. Neuroimage Clin, 2020, 28: 102415 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/32979842/. DOI: 10.1016/j.nicl.2020.102415.
[34]
JURGENS C K, JASINSCHI R, EKIN A, et al. MRI T2 Hypointensities in basal Ganglia of premanifest Huntington's disease[J/OL]. PLoS Curr, 2010, 2: RRN1173 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/20877453/. DOI: 10.1371/currents.RRN1173.
[35]
ROSAS H D, CHEN Y I, DOROS G, et al. Alterations in brain transition metals in Huntington disease: an evolving and intricate story[J]. Arch Neurol, 2012, 69(7): 887-893. DOI: 10.1001/archneurol.2011.2945.
[36]
CHEN L, HUA J, ROSS C A, et al. Altered brain iron content and deposition rate in Huntington's disease as indicated by quantitative susceptibility MRI[J]. J Neurosci Res, 2019, 97(4): 467-479. DOI: 10.1002/jnr.24358.
[37]
DOMÍNGUEZ J F, NG A C, POUDEL G, et al. Iron accumulation in the basal Ganglia in Huntington's disease: cross-sectional data from the IMAGE-HD study[J]. J Neurol Neurosurg Psychiatry, 2016, 87(5): 545-549. DOI: 10.1136/jnnp-2014-310183.
[38]
BENEDICT R H B, DELUCA J, ENZINGER C, et al. Neuropsychology of multiple sclerosis: looking back and moving forward[J]. J Int Neuropsychol Soc, 2017, 23(9/10): 832-842. DOI: 10.1017/S1355617717000959.
[39]
BENEDICT R H B, AMATO M P, DELUCA J, et al. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues[J]. Lancet Neurol, 2020, 19(10): 860-871. DOI: 10.1016/S1474-4422(20)30277-5.
[40]
ZIVADINOV R, TAVAZZI E, BERGSLAND N, et al. Brain iron at quantitative MRI is associated with disability in multiple sclerosis[J]. Radiology, 2018, 289(2): 487-496. DOI: 10.1148/radiol.2018180136.
[41]
AZEVEDO C J, CEN S Y, KHADKA S, et al. Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease[J]. Ann Neurol, 2018, 83(2): 223-234. DOI: 10.1002/ana.25150.
[42]
HUANG S N, LI S, FENG H, et al. Iron metabolism disorders for cognitive dysfunction after mild traumatic brain injury[J/OL]. Front Neurosci, 2021, 15: 587197 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/33796002/. DOI: 10.3389/fnins.2021.587197.
[43]
RAZ E, JENSEN J H, GE Y, et al. Brain iron quantification in mild traumatic brain injury: a magnetic field correlation study[J]. AJNR Am J Neuroradiol, 2011, 32(10): 1851-1856. DOI: 10.3174/ajnr.A2637.
[44]
LU L Y, CAO H L, WEI X E, et al. Iron deposition is positively related to cognitive impairment in patients with chronic mild traumatic brain injury: assessment with susceptibility weighted imaging[J/OL]. Biomed Res Int, 2015, 2015: 470676 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/26798636/. DOI: 10.1155/2015/470676.
[45]
GOZT A, HELLEWELL S, WARD P G D, et al. Emerging applications for quantitative susceptibility mapping in the detection of traumatic brain injury pathology[J/OL]. Neuroscience, 2021, 467: 218-236 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/34087394/. DOI: 10.1016/j.neuroscience.2021.05.030.
[46]
WANG L, YIN Y L, LIU X Z, et al. Current understanding of metal ions in the pathogenesis of Alzheimer's disease[J/OL]. Transl Neurodegener, 2020, 9: 10 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/32266063/. DOI: 10.1186/s40035-020-00189-z.
[47]
SPENCE H, MCNEIL C J, WAITER G D. The impact of brain iron accumulation on cognition: a systematic review[J/OL]. PLoS One, 2020, 15(10): e0240697 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/33057378/. DOI: 10.1371/journal.pone.0240697.

PREV Research progress on neuroimaging biomarkers of cognitive impairment in patients with type 2 diabetes
NEXT Implications of habitat imaging-based multisequence MRI in adult-type diffuse glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn