Share:
Share this content in WeChat
X
Review
Application and research progress of extracellular volume based on MRI and CT in malignant tumor
WANG Yijie  YANG Yaying  WEI Bo  CHEN Haijing  CAO Chaoyang 

WANG Y J, YANG Y Y, WEI B, et al. Application and research progress of extracellular volume based on MRI and CT in malignant tumor[J]. Chin J Magn Reson Imaging, 2023, 14(9): 131-135. DOI:10.12015/issn.1674-8034.2023.09.024.


[Abstract] Extracellular volume (ECV) is a quantitative factor of intravascular and extravascular-extracellular space. With the further study of tumor microenvironment, ECV can quantify the decisive components of malignant tumors and provide more quantitative analysis indicators non-invasively, and has a wide application prospect in tumor-related diseases. We reviewed the application of ECV based on MRI and CT in the diagnosis, differential diagnosis, pathological grading and prognosis of malignant tumors in this paper to enable clinicians and radiologists to understand the application of ECV in malignant tumors, in order to promote the application of ECV in cancer research and development.
[Keywords] malignant tumor;extracellular volume;extracellular matrix;magnetic resonance imaging;tomography;X-ray computed

WANG Yijie   YANG Yaying*   WEI Bo   CHEN Haijing   CAO Chaoyang  

Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China

Corresponding author: Yang YY, E-mail: yayingyang@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Special Fund of Yunnan Research Center of Radiation and Therapeutic Clinical Medicine (No. 202102AA100067).
Received  2023-03-20
Accepted  2023-07-27
DOI: 10.12015/issn.1674-8034.2023.09.024
WANG Y J, YANG Y Y, WEI B, et al. Application and research progress of extracellular volume based on MRI and CT in malignant tumor[J]. Chin J Magn Reson Imaging, 2023, 14(9): 131-135. DOI:10.12015/issn.1674-8034.2023.09.024.

[1]
KARAMANOS N K, THEOCHARIS A D, PIPERIGKOU Z, et al. A guide to the composition and functions of the extracellular matrix[J]. FEBS J, 2021, 288(24): 6850-6912. DOI: 10.1111/febs.15776.
[2]
FANG Z L, MENG Q C, XU J, et al. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives[J]. Cancer Commun, 2023, 43(1): 3-41. DOI: 10.1002/cac2.12392.
[3]
ASIF P J, LONGOBARDI C, HAHNE M, et al. The role of cancer-associated fibroblasts in cancer invasion and metastasis[J/OL]. Cancers, 2021, 13(18): 4720 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/34572947/. DOI: 10.3390/cancers13184720.
[4]
COX T R. The matrix in cancer[J]. Nat Rev Cancer, 2021, 21(4): 217-238. DOI: 10.1038/s41568-020-00329-7.
[5]
WINKLER J, ABISOYE-OGUNNIYAN A, METCALF K J, et al. Concepts of extracellular matrix remodelling in tumour progression and metastasis[J/OL]. Nat Commun, 2020, 11(1): 5120 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/33037194/. DOI: 10.1038/s41467-020-18794-x.
[6]
WANG R K. Correlation between CT based extracellular volume fraction and pathological grading of renal clear cells[D]. Changchun: Jilin University, 2021. DOI: 10.27162/d.cnki.gjlin.2021.006520.
[7]
ZHENG W X, WANG L L, CHEN X B, et al. Extracellular volume quantified by spectral CT to assess neurovascular and lymphatic infiltration in patient with colorectal cancer[J]. Chin J Med Imag, 2022, 30(9): 896-902. DOI: 10.3969/j.issn.1005-5185.2022.09.005.
[8]
SU M Y, HUANG Y S, NIISATO E, et al. Is a timely assessment of the hematocrit necessary for cardiovascular magnetic resonance-derived extracellular volume measurements?[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 77 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/33250055/. DOI: 10.1186/s12968-020-00689-x.
[9]
NAKAMORI S, DOHI K, ISHIDA M, et al. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2018, 11(1): 48-59. DOI: 10.1016/j.jcmg.2017.04.006.
[10]
FUKUI H, ONISHI H, NAKAMOTO A, et al. Pancreatic fibrosis by extracellular volume fraction using Contrast-enhanced computed tomography and relationship with pancreatic cancer[J/OL]. Eur J Radiol, 2022, 156: 110522 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/36113381/. DOI: 10.1016/j.ejrad.2022.110522.
[11]
CHANG C C, LIN C Y, CHU C Y, et al. Extracellular volume fraction measurement correlates with lymphocyte abundance in thymic epithelial tumors[J/OL]. Cancer Imaging, 2020, 20(1): 71 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/33028413/. DOI: 10.1186/s40644-020-00349-4.
[12]
LI S J, LIU J, GUO R F, et al. T1 mapping and extracellular volume fraction measurement to evaluate the poor-prognosis factors in patients with cervical squamous cell carcinoma[J/OL]. NMR Biomed, 2023, 36(8): e4918 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/36914267/. DOI: 10.1002/nbm.4918.
[13]
CUI F J, LI L, LUO Y H, et al. Exploration of evaluating the differentiation degree of hepatocellular carcinoma by using extracellular volume fraction[J]. Oncoradiology, 2020, 29(3): 303-307. DOI: 10.19732/j.cnki.2096-6210.2020.03.017.
[14]
OXBURGH L. The extracellular matrix environment of clear cell renal cell carcinoma[J/OL]. Cancers, 2022, 14(17): 4072 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/36077607/. DOI: 10.3390/cancers14174072.
[15]
ADAMS L C, JURMEISTER P, RALLA B, et al. Assessment of the extracellular volume fraction for the grading of clear cell renal cell carcinoma: first results and histopathological findings[J]. Eur Radiol, 2019, 29(11): 5832-5843. DOI: 10.1007/s00330-019-06087-x.
[16]
YANG Y Q. The diagnostic value of extracellular volume fraction in different pathological types of lung cancer[D]. Jinan: Shandong University, 2022. DOI: 10.27272/d.cnki.gshdu.2022.004765.
[17]
WANG W, FAN X F, YANG J, et al. Preliminary MRI study of extracellular volume fraction for identification of lymphovascular space invasion of cervical cancer[J]. J Magn Reson Imaging, 2023, 57(2): 587-597. DOI: 10.1002/jmri.28423.
[18]
KOBAYASHI H, ENOMOTO A, WOODS S L, et al. Cancer-associated fibroblasts in gastrointestinal cancer[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(5): 282-295. DOI: 10.1038/s41575-019-0115-0.
[19]
LANDSKRON G, DE LA FUENTE LÓPEZ M, DUBOIS-CAMACHO K, et al. Interleukin 33/ST2 axis components are associated to desmoplasia, a metastasis-related factor in colorectal cancer[J/OL]. Front Immunol, 2019, 10: 1394 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/31281317/. DOI: 10.3389/fimmu.2019.01394.
[20]
SHAO R L. Extracellular volume fraction based on contrast-enhanced CT images predicts hepatic metastasis and lymphatic metastasis from colon carcioma[D]. Changchun: Jilin University, 2020. DOI: 10.27162/d.cnki.gjlin.2020.003217.
[21]
SCHWARZENBERG F L, SCHÜTZ P, HAMMEL J U, et al. Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array[J/OL]. Front Immunol, 2022, 13: 947961 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/36524111/. DOI: 10.3389/fimmu.2022.947961.
[22]
ZHOU Y, SU G Y, HU H, et al. Radiomics analysis of dual-energy CT-derived iodine maps for diagnosing metastatic cervical lymph nodes in patients with papillary thyroid cancer[J]. Eur Radiol, 2020, 30(11): 6251-6262. DOI: 10.1007/s00330-020-06866-x.
[23]
ZHOU Y, GENG D, SU G Y, et al. Extracellular volume fraction derived from dual-layer spectral detector computed tomography for diagnosing cervical lymph nodes metastasis in patients with papillary thyroid cancer: a preliminary study[J/OL]. Front Oncol, 2022, 12: 851244 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/35756662/. DOI: 10.3389/fonc.2022.851244.
[24]
HU D D, LI Z Q, ZHENG B, et al. Cancer-associated fibroblasts in breast cancer: challenges and opportunities[J]. Cancer Commun, 2022, 42(5): 401-434. DOI: 10.1002/cac2.12291.
[25]
THOMAS D, RADHAKRISHNAN P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis[J/OL]. Mol Cancer, 2019, 18(1): 14 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/30665410/. DOI: 10.1186/s12943-018-0927-5.
[26]
PERAN I, DAKSHANAMURTHY S, MCCOY M D, et al. Cadherin 11 promotes immunosuppression and extracellular matrix deposition to support growth of pancreatic tumors and resistance to gemcitabine in mice[J]. Gastroenterology, 2021, 160(4): 1359-1372.e13. DOI: 10.1053/j.gastro.2020.11.044.
[27]
ZHAO G J, WANG C J, JIAO J, et al. The novel subclusters based on cancer-associated fibroblast for pancreatic adenocarcinoma[J/OL]. Front Oncol, 2022, 12: 1045477 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/36544710/. DOI: 10.3389/fonc.2022.1045477.
[28]
ZHANG J B, CHEN M L, FANG C F, et al. A cancer-associated fibroblast gene signature predicts prognosis and therapy response in patients with pancreatic cancer[J/OL]. Front Oncol, 2022, 12: 1052132 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/36465388/. DOI: 10.3389/fonc.2022.1052132.
[29]
FUKUKURA Y, KUMAGAE Y, FUJISAKI Y, et al. Extracellular volume fraction with MRI: As an alternative predictive biomarker to dynamic contrast-enhanced MRI for chemotherapy response of pancreatic ductal adenocarcinoma[J/OL]. Eur J Radiol, 2021, 145: 110036 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/34814039/. DOI: 10.1016/j.ejrad.2021.110036.
[30]
FUKUKURA Y, KUMAGAE Y, HIGASHI R, et al. Extracellular volume fraction determined by equilibrium contrast-enhanced dual-energy CT as a prognostic factor in patients with stage Ⅳ pancreatic ductal adenocarcinoma[J]. Eur Radiol, 2020, 30(3): 1679-1689. DOI: 10.1007/s00330-019-06517-w.
[31]
FUKUKURA Y, KUMAGAE Y, HIGASHI R, et al. Estimation of extracellular volume fraction with routine Multiphasic pancreatic computed tomography to predict the survival of patients with stage Ⅳ pancreatic ductal adenocarcinoma[J]. Pancreas, 2019, 48(10): 1360-1366. DOI: 10.1097/MPA.0000000000001427.
[32]
IWAYA H, FUKUKURA Y, HASHIMOTO S, et al. Prognostic significance of extracellular volume fraction with equilibrium contrast-enhanced computed tomography for pancreatic neuroendocrine neoplasms[J]. Pancreatology, 2021, 21(4): 779-786. DOI: 10.1016/j.pan.2021.02.020.
[33]
FUKUKURA Y, KUMAGAE Y, HIGASHI R, et al. Extracellular volume fraction determined by equilibrium contrast-enhanced multidetector computed tomography as a prognostic factor in unresectable pancreatic adenocarcinoma treated with chemotherapy[J]. Eur Radiol, 2019, 29(1): 353-361. DOI: 10.1007/s00330-018-5570-4.
[34]
KIM H, MORGAN D E, SCHEXNAILDER P, et al. Accurate therapeutic response assessment of pancreatic ductal adenocarcinoma using quantitative dynamic contrast-enhanced magnetic resonance imaging with a point-of-care perfusion phantom: a pilot study[J]. Invest Radiol, 2019, 54(1): 16-22. DOI: 10.1097/RLI.0000000000000505.
[35]
KANG S R, KIM H W, KIM H S. Evaluating the Relationship Between Dynamic Contrast-Enhanced MRI (DCE-MRI) Parameters and Pathological Characteristics in Breast Cancer[J]. J Magn Reson Imaging, 2020, 52(5): 1360-1373. DOI: 10.1002/jmri.27241.
[36]
ZHU Y J, JIANG Z C, WANG B Z, et al. Quantitative dynamic-enhanced MRI and intravoxel incoherent motion diffusion-weighted imaging for prediction of the pathological response to neoadjuvant chemotherapy and the prognosis in locally advanced gastric cancer[J/OL]. Front Oncol, 2022, 12: 841460 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/35425711/. DOI: 10.3389/fonc.2022.841460.
[37]
XIA X B, WEN L, ZHOU F, et al. Predictive value of DCE-MRI and IVIM-DWI in osteosarcoma patients with neoadjuvant chemotherapy[J/OL]. Front Oncol, 2022, 12: 967450 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/36313686/. DOI: 10.3389/fonc.2022.967450.
[38]
GUO W, ZHANG Y, LUO D H, et al. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for pretreatment prediction of neoadjuvant chemotherapy response in locally advanced hypopharyngeal cancer[J/OL]. Br J Radiol, 2020, 93(1115): 20200751 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/32915647/. DOI: 10.1259/bjr.20200751.
[39]
VAN PELT G W, KROL J A, LIPS I M, et al. The value of tumor-stroma ratio as predictor of pathologic response after neoadjuvant chemoradiotherapy in esophageal cancer[J/OL]. Clin Transl Radiat Oncol, 2020, 20: 39-44 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/31886418/. DOI: 10.1016/j.ctro.2019.11.003.
[40]
LUNDHOLM L, MONTELIUS M, JALNEFJORD O, et al. VERDICT MRI for radiation treatment response assessment in neuroendocrine tumors[J/OL]. NMR Biomed, 2022, 35(6): e4680 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/34957637/. DOI: 10.1002/nbm.4680.
[41]
BAK S, KIM J E, BAE K, et al. Quantification of liver extracellular volume using dual-energy CT: utility for prediction of liver-related events in cirrhosis[J]. Eur Radiol, 2020, 30(10): 5317-5326. DOI: 10.1007/s00330-020-06876-9.
[42]
LI S A, ZHOU D, SIRAJUDDIN A, et al. T1 mapping and extracellular volume fraction in dilated cardiomyopathy[J]. JACC, 2022, 15(4): 578-590. DOI: 10.1016/j.jcmg.2021.07.023.
[43]
MESROPYAN N, KUPCZYK P A, DOLD L, et al. Assessment of liver cirrhosis severity with extracellular volume fraction MRI[J/OL]. Sci Rep, 2022, 12(1): 9422 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/35676399/. DOI: 10.1038/s41598-022-13340-9.
[44]
LIN Y C, CHUANG W Y, WEI F C, et al. Peripheral arterial disease: the role of extracellular volume measurements in lower limb muscles with MRI[J]. Eur Radiol, 2020, 30(7): 3943-3950. DOI: 10.1007/s00330-020-06730-y.
[45]
DUMITRU R B, GOODALL A F, BROADBENT D A, et al. First pilot study of extracellular volume MRI measurement in peripheral muscle of systemic sclerosis patients suggests diffuse fibrosis[J]. Rheumatology, 2022, 61(4): 1651-1657. DOI: 10.1093/rheumatology/keab567.
[46]
MA R Q, GENG Y, GAN L, et al. Quantitative T1 mapping MRI for the assessment of extraocular muscle fibrosis in thyroid-associated ophthalmopathy[J]. Endocrine, 2022, 75(2): 456-464. DOI: 10.1007/s12020-021-02873-0.
[47]
BRIASOULIS A, LAMA N, REMPAKOS A, et al. Diagnostic and prognostic value of non-late gadolinium enhancement cardiac magnetic resonance parameters in cardiac amyloidosis[J/OL]. Curr Probl Cardiol, 2023, 48(4): 101573 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/36586704/. DOI: 10.1016/j.cpcardiol.2022.101573.
[48]
CHACKO L, BOLDRINI M, MARTONE R, et al. Cardiac magnetic resonance-derived extracellular volume mapping for the quantification of hepatic and splenic amyloid[J/OL]. Circ Cardiovasc Imaging, 2021 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/33876651/. DOI: 10.1161/CIRCIMAGING.121.012506.
[49]
TANI T, SATO K, SAKAMOTO K, et al. Importance of extracellular volume fraction of the spleen as a predictive biomarker for high-risk esophago-gastric varices in patients with chronic liver diseases: a preliminary report[J/OL]. Eur J Radiol, 2021, 143: 109924 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/34481116/. DOI: 10.1016/j.ejrad.2021.109924.
[50]
MARTY B, BAUDIN P Y, CALDAS DE ALMEIDA ARAUJO E, et al. Assessment of extracellular volume fraction in Becker muscular dystrophy by using MR fingerprinting[J/OL]. Radiology, 2023, 307(3): e221115 [2023-03-19]. https://pubmed.ncbi.nlm.nih.gov/36880945/. DOI: 10.1148/radiol.221115.
[51]
PENG Y L, SHEN H S, TANG H, et al. Nomogram based on CT-derived extracellular volume for the prediction of post-hepatectomy liver failure in patients with resectable hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(12): 8529-8539. DOI: 10.1007/s00330-022-08917-x.

PREV Research progress of magnetic resonance imaging in the assessment of TAO activity
NEXT Application progress of MRI radiomics in predicting the prognosis of breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn