Share:
Share this content in WeChat
X
Review
Application progress of MRI radiomics in predicting the prognosis of breast cancer
WANG Yu  WEN Shengbao  ZHOU Hongyu  HAN Qiancheng  ZHAO Yalong 

WANG Y, WEN S B, ZHOU H Y, et al. Application progress of MRI radiomics in predicting the prognosis of breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(9): 136-140. DOI:10.12015/issn.1674-8034.2023.09.025.


[Abstract] Breast cancer is the most common cancer among women worldwide and is characterized by intra- and inter-tumor heterogeneity that strongly contributes towards its poor prognosis. With more and more high-precision diagnosis and treatment data, breast Magnetic resonance imaging (MRI) radiomics shows great potential. MRI is the most sensitive imaging method for breast cancer as it provides a comprehensive assessment of the overall tumor information by observing the morphological and hemodynamic characteristics of the lesion. As a new research field for high-throughput extraction and quantitative analysis of image features, radiomics has received extensive attention and been applied in the field of tumors in recent years. We summarized the steps of the work flow of radiomics, and according to the published literature to study the application of MRI radiomics in predicting the prognosis of breast cancer, as well as the limitations and challenges of radiomics in this paper, so as to provide ideas for clinical accurate diagnosis and treatment and improve the level of prognosis evaluation of breast cancer in female population.
[Keywords] breast cancer;dynamic contrast-enhanced magnetic resonance imaging;prognosis;radiomics;nomograms;prediction;magnetic resonance imaging

WANG Yu   WEN Shengbao*   ZHOU Hongyu   HAN Qiancheng   ZHAO Yalong  

Imaging Center of Qinghai University Affiliated Hospital, Xining 810000, China

Corresponding author: Wen SB, E-mail: qdfyyxzxwsb@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS The ICON Research Fund Project of the China Red Cross Foundation's "Yingrui Northwest Public Welfare Project" (No. XM_HR_ICON_2020_10).
Received  2023-05-12
Accepted  2023-07-27
DOI: 10.12015/issn.1674-8034.2023.09.025
WANG Y, WEN S B, ZHOU H Y, et al. Application progress of MRI radiomics in predicting the prognosis of breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(9): 136-140. DOI:10.12015/issn.1674-8034.2023.09.025.

[1]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
KIM J H, KO E S, LIM Y, et al. Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes[J]. Radiology, 2017, 282(3): 665-675. DOI: 10.1148/radiol.2016160261.
[4]
NAM S Y, KO E S, LIM Y, et al. Preoperative dynamic breast magnetic resonance imaging kinetic features using computer-aided diagnosis: association with survival outcome and tumor aggressiveness in patients with invasive breast cancer[J/OL]. PLoS One, 2018, 13(4): e0195756 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/29649266/. DOI: 10.1371/journal.pone.0195756.
[5]
BIAN X Q, DU S Y, ZHANG L N. Application and prospect of preoperative MRI in predicting the prognosis of breast cancer[J]. Chin J Magn Reson Imag, 2022, 13(6): 147-150. DOI: 10.12015/issn.1674-8034.2022.06.031.
[6]
GILLIES R J, ANDERSON A R, GATENBY R A, et al. The biology underlying molecular imaging in oncology: from genome to anatome and back again[J]. Clin Radiol, 2010, 65(7): 517-521. DOI: 10.1016/j.crad.2010.04.005.
[7]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[8]
LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309.
[9]
CHEN M, COPLEY S J, VIOLA P, et al. Radiomics and artificial intelligence for precision medicine in lung cancer treatment[J/OL]. Semin Cancer Biol, 2023, 93: 97-113 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/37211292/. DOI: 10.1016/j.semcancer.2023.05.004.
[10]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[11]
HE L, HUANG Y Q, MA Z L, et al. Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule[J/OL]. Sci Rep, 2016, 6: 34921 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/27721474/. DOI: 10.1038/srep34921.
[12]
SHI Z, LIU Q. Research and challenge of imaging technology and method[J]. Radiol Pract, 2018, 33(6): 633-636. DOI: 10.13609/j.cnki.1000-0313.2018.06.018.
[13]
LIU Y, LIU J Y, ZHANG F. Clinical research progress and application of radiomics[J]. J Henan Univ Med Sci, 2022, 41(6): 400-406. DOI: 10.15991/j.cnki.41-1361/r.2022.06.014.
[14]
PARK J E, PARK S Y, KIM H J, et al. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives[J]. Korean J Radiol, 2019, 20(7): 1124-1137. DOI: 10.3348/kjr.2018.0070.
[15]
RIZZO S, BOTTA F, RAIMONDI S, et al. Radiomics: the facts and the challenges of image analysis[J/OL]. Eur Radiol Exp, 2018, 2(1): 36 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/30426318/. DOI: 10.1186/s41747-018-0068-z.
[16]
ZHOU J Y, YOU C, GU Y J. Progress of radiomics in breast cancer[J]. Int J Med Radiol, 2022, 45(2): 174-179. DOI: 10.19300/j.2022.Z19428.
[17]
SHRESTHA P, POUDYAL B, YADOLLAHI S, et al. A systematic review on the use of artificial intelligence in gynecologic imaging- Background, state of the art, and future directions[J]. Gynecol Oncol, 2022, 166(3): 596-605. DOI: 10.1016/j.ygyno.2022.07.024.
[18]
WANG W W, ZHANG X D, ZHU L M, et al. Prediction of prognostic factors and genotypes in patients with breast cancer using multiple mathematical models of MR diffusion imaging[J/OL]. Front Oncol, 2022, 12: 825264 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/35174093/. DOI: 10.3389/fonc.2022.825264.
[19]
HUANG Y, LIN Y, HU W, et al. Diffusion kurtosis at 3.0T as an in vivo imaging marker for breast cancer characterization: correlation with prognostic factors[J]. J Magn Reson Imaging, 2019, 49(3): 845-856. DOI: 10.1002/jmri.26249.
[20]
LI R H, ZHANG J L, LIU D Y, et al. Research progress on prognostic factors of breast cancer[J]. J Mod Clin Med, 2020, 46(4): 315-317. DOI: 10.11851/j.issn.1673-1557.2020.04.027.
[21]
ANDERSSON Y, BERGKVIST L, FRISELL J, et al. Long-term breast cancer survival in relation to the metastatic tumor burden in axillary lymph nodes[J]. Breast Cancer Res Treat, 2018, 171(2): 359-369. DOI: 10.1007/s10549-018-4820-0.
[22]
GALIMBERTI V, COLE B F, VIALE G, et al. Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial[J]. Lancet Oncol, 2018, 19(10): 1385-1393. DOI: 10.1016/S1470-2045(18)30380-2.
[23]
GIULIANO A E, BALLMAN K V, MCCALL L, et al. Effect of axillary dissection vs No axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (alliance) randomized clinical trial[J]. JAMA, 2017, 318(10): 918-926. DOI: 10.1001/jama.2017.11470.
[24]
HAN L, ZHU Y B, LIU Z Y, et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer[J]. Eur Radiol, 2019, 29(7): 3820-3829. DOI: 10.1007/s00330-018-5981-2.
[25]
CHEN Y H, WANG L J, DONG X, et al. Deep learning radiomics of preoperative breast MRI for prediction of axillary lymph node metastasis in breast cancer[J]. J Digit Imaging, 2023, 36(4): 1323-1331. DOI: 10.1007/s10278-023-00818-9.
[26]
ZHAO N N, ZHU Y, TANG X M, et al. Prediction of axillary lymph node metastasis in breast cancer based on intra-tumoral and peri-tumoral MRI radiomics nomogram[J]. Chin J Magn Reson Imag, 2023, 14(3): 81-87, 94. DOI: 10.12015/issn.1674-8034.2023.03.014.
[27]
CHENG Y, XU S, WANG H T, et al. Intra- and peri-tumoral radiomics for predicting the sentinel lymph node metastasis in breast cancer based on preoperative mammography and MRI[J/OL]. Front Oncol, 2022, 12: 1047572 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/36578933/. DOI: 10.3389/fonc.2022.1047572.
[28]
CUI X Y, WANG N, ZHAO Y, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer using radiomics features of DCE-MRI[J/OL]. Sci Rep, 2019, 9(1): 2240 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/30783148/. DOI: 10.1038/s41598-019-38502-0.
[29]
ZHAO J L, WANG X J, LI Y, et al. Regulatory role of tumor microenvironment in triple negative breast cancer and its treatment progress[J]. J Med Res, 2020, 49(9): 11-14, 23. DOI: 10.11969/j.issn.1673-548X.2020.09.003.
[30]
MURAKAMI W, TOZAKI M, SASAKI M, et al. Correlation between 18F-FDG uptake on PET/MRI and the level of tumor-infiltrating lymphocytes (TILs) in triple-negative and HER2-positive breast cancer[J/OL]. Eur J Radiol, 2020, 123: 108773 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/31918248/. DOI: 10.1016/j.ejrad.2019.108773.
[31]
FRANKOWSKA K, ZAROBKIEWICZ M, DĄBROWSKA I, et al. Tumor infiltrating lymphocytes and radiological picture of the tumor[J/OL]. Med Oncol, 2023, 40(6): 176 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/37178270/. DOI: 10.1007/s12032-023-02036-3.
[32]
BIAN T T, WU Z J, LIN Q, et al. Evaluating tumor-infiltrating lymphocytes in breast cancer using preoperative MRI-based radiomics[J]. J Magn Reson Imaging, 2022, 55(3): 772-784. DOI: 10.1002/jmri.27910.
[33]
HAN X R, CAO W T, WU L, et al. Radiomics assessment of the tumor immune microenvironment to predict outcomes in breast cancer[J/OL]. Front Immunol, 2021, 12: 773581 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/35046937/. DOI: 10.3389/fimmu.2021.773581.
[34]
TANG W J, KONG Q C, CHENG Z X, et al. Performance of radiomics models for tumour-infiltrating lymphocyte (TIL) prediction in breast cancer: the role of the dynamic contrast-enhanced (DCE) MRI phase[J]. Eur Radiol, 2022, 32(2): 864-875. DOI: 10.1007/s00330-021-08173-5.
[35]
PISCO A O, HUANG S. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: 'What does not kill me strengthens me'[J]. Br J Cancer, 2015, 112(11): 1725-1732. DOI: 10.1038/bjc.2015.146.
[36]
YE D M, WANG H T, YU T. The application of radiomics in breast MRI: a review[J/OL]. Technol Cancer Res Treat, 2020, 19: 1533033820916191 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/32347167/. DOI: 10.1177/1533033820916191.
[37]
XIE T W, ZHAO Q F, FU C X, et al. Differentiation of triple-negative breast cancer from other subtypes through whole-tumor histogram analysis on multiparametric MR imaging[J]. Eur Radiol, 2019, 29(5): 2535-2544. DOI: 10.1007/s00330-018-5804-5.
[38]
FAN M, ZHANG P, WANG Y, et al. Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer[J]. Eur Radiol, 2019, 29(8): 4456-4467. DOI: 10.1007/s00330-018-5891-3.
[39]
LEITHNER D, BERNARD-DAVILA B, MARTINEZ D F, et al. Radiomic signatures derived from diffusion-weighted imaging for the assessment of breast cancer receptor status and molecular subtypes[J]. Mol Imaging Biol, 2020, 22(2): 453-461. DOI: 10.1007/s11307-019-01383-w.
[40]
JIMENEZ J E, ABDELHAFEZ A, MITTENDORF E A, et al. A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer[J/OL]. Eur J Radiol, 2022, 149: 110220 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/35193025/. DOI: 10.1016/j.ejrad.2022.110220.
[41]
ZHU X L, WU J L. Application progress of MRI radiomics in the efficacy and prognosis of neoadjuvant chemotherapy for breast cancer[J]. Chin J Magn Reson Imag, 2022, 13(3): 159-161, 165. DOI: 10.12015/issn.1674-8034.2022.03.038.
[42]
ZENG Q, XIONG F, LIU L, et al. Radiomics based on DCE-MRI for predicting response to neoadjuvant therapy in breast cancer[J/OL]. Acad Radiol, 2023 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/37169624/. DOI: 10.1016/j.acra.2023.04.009.
[43]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[44]
CHOUDHERY S, GOMEZ-CARDONA D, FAVAZZA C P, et al. MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy[J/OL]. Acad Radiol, 2022, 29(Suppl 1): S145-S154 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/33160859/. DOI: 10.1016/j.acra.2020.10.020.
[45]
HUANG Y H, ZHU T, ZHANG X L, et al. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study[J/OL]. EClinicalMedicine, 2023, 58: 101899 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/37007742/. DOI: 10.1016/j.eclinm.2023.101899.
[46]
YU Y F, TAN Y J, XIE C M, et al. Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer[J/OL]. JAMA Netw Open, 2020, 3(12): e2028086 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/33289845/. DOI: 10.1001/jamanetworkopen.2020.28086.
[47]
CHAN H M, VAN DER VELDEN B H M, LOO C E, et al. Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI: a feasibility study[J]. Phys Med Biol, 2017, 62(16): 6467-6485. DOI: 10.1088/1361-6560/aa7dc5.
[48]
HA R, CHANG P, MUTASA S, et al. Convolutional neural network using a breast MRI tumor dataset can predict oncotype dx recurrence score[J]. J Magn Reson Imaging, 2019, 49(2): 518-524. DOI: 10.1002/jmri.26244.
[49]
DRUKKER K, LI H, ANTROPOVA N, et al. Most-enhancing tumor volume by MRI radiomics predicts recurrence-free survival early on in neoadjuvant treatment of breast cancer[J/OL]. Cancer Imaging, 2018, 18(1): 12 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/29653585/. DOI: 10.1186/s40644-018-0145-9.
[50]
CHITALIA R D, ROWLAND J, MCDONALD E S, et al. Imaging phenotypes of breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) scans predict 10-year recurrence[J]. Clin Cancer Res, 2020, 26(4): 862-869. DOI: 10.1158/1078-0432.CCR-18-4067.
[51]
REZVANI HABIBABADI R, KHOSHPOURI P, GHADIMI M, et al. Comparison between ROI-based and volumetric measurements in quantifying heterogeneity of liver stiffness using MR elastography[J]. Eur Radiol, 2020, 30(3): 1609-1615. DOI: 10.1007/s00330-019-06478-0.
[52]
MCKINNEY S M, SIENIEK M, GODBOLE V, et al. Addendum: international evaluation of an AI system for breast cancer screening[J/OL]. Nature, 2020, 586(7829): E19 [2023-05-11]. https://pubmed.ncbi.nlm.nih.gov/33057216/. DOI: 10.1038/s41586-020-2679-9.

PREV Application and research progress of extracellular volume based on MRI and CT in malignant tumor
NEXT Summary of mammography of breast MRI and progress in its prognostic application
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn