Share:
Share this content in WeChat
X
Review
Research progress of MRI radiomics in the evaluation of curative effect of hepatocellular carcinoma
YAO Meijuan  TAN Yan 

YAO M J, TAN Y. Research progress of MRI radiomics in the evaluation of curative effect of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(9): 154-158. DOI:10.12015/issn.1674-8034.2023.09.028.


[Abstract] Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor and the fourth leading cause of cancer-related mortality worldwide. Early and accurate prediction of therapeutic effect is very important for the prognosis of patients, but most indexes for evaluating therapeutic effect are based on postoperative pathological puncture, which is not helpful for preoperative decision-making. MRI radiomics can quantify tumor heterogeneity through the spatial distribution and relationship of gray levels in medical images and quantitatively extract the microscopic characteristics of images in order to clarify the degree of tumor pathological remission, predict the therapeutic effect of tumors before operations, and meet the needs of subsequent individualized treatment plan formulation. This paper reviews the research progress of MRI imaging in the evaluation of the therapeutic effect of HCC in order to expand the application value of MRI imaging in predicting recurrence and evaluating the therapeutic effect of HCC and to provide new ideas for formulating the best clinical treatment plan.
[Keywords] hepatocellular carcinoma;curative effect;prognostic evaluation;radiomics;magnetic resonance imaging

YAO Meijuan1   TAN Yan2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: Tan Y, E-mail: tanyan123456@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071893).
Received  2023-04-19
Accepted  2023-08-09
DOI: 10.12015/issn.1674-8034.2023.09.028
YAO M J, TAN Y. Research progress of MRI radiomics in the evaluation of curative effect of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(9): 154-158. DOI:10.12015/issn.1674-8034.2023.09.028.

[1]
VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462. DOI: 10.1056/nejmra1713263.
[2]
REIG M, FORNER A, RIMOLA J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update[J]. J Hepatol, 2022, 76(3): 681-693. DOI: 10.1016/j.jhep.2021.11.018.
[3]
ALLAIRE M, BRUIX J, KORENJAK M, et al. What to do about hepatocellular carcinoma: recommendations for health authorities from the International Liver Cancer Association[J/OL]. JHEP Rep, 2022, 4(12): 100578 [2023-04-18]. https://doi.org/10.1016/j.jhepr.2022. DOI: 10.1016/j.jhepr.2022.100578.
[4]
MIRANDA MAGALHAES SANTOS J M, CLEMENTE OLIVEIRA B, ARAUJO-FILHO J A B, et al. State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations[J]. Abdom Radiol, 2020, 45(2): 342-353. DOI: 10.1007/s00261-019-02299-3.
[5]
GONG X Q, TAO Y Y, WU Y K, et al. Progress of MRI radiomics in hepatocellular carcinoma[J/OL]. Front Oncol, 2021, 11: 698373 [2023-04-18]. https://doi.org/10.3389/fonc.2021.698373. DOI: 10.3389/fonc.2021.698373.
[6]
VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. DOI: 10.1016/s0140-6736(22)01200-4.
[7]
OMATA M, CHENG A L, KOKUDO N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update[J]. Hepatol Int, 2017, 11(4): 317-370. DOI: 10.1007/s12072-017-9799-9.
[8]
KULIK L, EL-SERAG H B. Epidemiology and management of hepatocellular carcinoma[J]. Gastroenterology, 2019, 156(2): 477-491. DOI: 10.1053/j.gastro.2018.08.065.
[9]
AHN S J, KIM J H, PARK S J, et al. Hepatocellular carcinoma: preoperative gadoxetic acid-enhanced MR imaging can predict early recurrence after curative resection using image features and texture analysis[J]. Abdom Radiol, 2019, 44(2): 539-548. DOI: 10.1007/s00261-018-1768-9.
[10]
ZHANG Z, CHEN J, JIANG H Y, et al. Gadoxetic acid-enhanced MRI radiomics signature: prediction of clinical outcome in hepatocellular carcinoma after surgical resection[J/OL]. Ann Transl Med, 2020, 8(14): 870 [2023-04-18]. https://doi.org/10.21037/atm-20-3041. DOI: 10.21037/atm-20-3041.
[11]
REN Y Y, BO L L, SHEN B, et al. Development and validation of a clinical-radiomics model to predict recurrence for patients with hepatocellular carcinoma after curative resection[J]. Med Phys, 2023, 50(2): 778-790. DOI: 10.1002/mp.16061.
[12]
NIU Z S, NIU X J, WANG M. Management of hepatocellular carcinoma: predictive value of immunohistochemical markers for postoperative survival[J]. World J Hepatol, 2015, 7(1): 7-27. DOI: 10.4254/wjh.v7.i1.7.
[13]
XU J X, XING W T, PENG Y C, et al. Outcomes of postoperative adjuvant transarterial chemoembolization for hepatocellular carcinoma according to the Ki67 index[J]. Future Oncol, 2022, 18(17): 2113-2125. DOI: 10.2217/fon-2021-1443.
[14]
ZHANG X, WU Z X, PENG Y H, et al. Correlationship between Ki67, VEGF, and p53 and hepatocellular carcinoma recurrence in liver transplant patients[J/OL]. Biomed Res Int, 2021, 2021: 6651397 [2023-04-23]. https://doi.org/10.1155/2021/6651397. DOI: 10.1155/2021/6651397.
[15]
YE Z, JIANG H Y, CHEN J, et al. Texture analysis on gadoxetic acid enhanced-MRI for predicting Ki-67 status in hepatocellular carcinoma: a prospective study[J]. Chung Kuo Yen Cheng Yen Chiu, 2019, 31(5): 806-817. DOI: 10.21147/j.issn.1000-9604.2019.05.10.
[16]
BEAUFRÈRE A, CARUSO S, CALDERARO J, et al. Gene expression signature as a surrogate marker of microvascular invasion on routine hepatocellular carcinoma biopsies[J]. J Hepatol, 2022, 76(2): 343-352. DOI: 10.1016/j.jhep.2021.09.034.
[17]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[18]
LI L J, WU C Q, HUANG Y Q, et al. Radiomics for the preoperative evaluation of microvascular invasion in hepatocellular carcinoma: a meta-analysis[J/OL]. Front Oncol, 2022, 12: 831996 [2023-04-23]. https://doi.org/10.3389/fonc.2022.831996. DOI: 10.3389/fonc.2022.831996.
[19]
LU X Y, ZHANG J Y, ZHANG T, et al. Using pre-operative radiomics to predict microvascular invasion of hepatocellular carcinoma based on Gd-EOB-DTPA enhanced MRI[J/OL]. BMC Med Imaging, 2022, 22(1): 157 [2023-04-18]. https://doi.org/10.1186/s12880-022-00855-w. DOI: 10.1186/s12880-022-00855-w.
[20]
CHANG Y, JEONG S W, YOUNG JANG J, et al. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma[J/OL]. Int J Mol Sci, 2020, 21(21): 8165 [2023-04-18]. https://doi.org/10.3390/ijms21218165. DOI: 10.3390/ijms21218165.
[21]
LIU Q P, XU X, ZHU F P, et al. Prediction of prognostic risk factors in hepatocellular carcinoma with transarterial chemoembolization using multi-modal multi-task deep learning[J/OL]. EClinicalMedicine, 2020, 23: 100379 [2023-04-23]. https://doi.org/10.1016/j.eclinm.2020. DOI: 10.1016/j.eclinm.2020.100379.
[22]
KONG C L, ZHAO Z W, CHEN W Y, et al. Prediction of tumor response via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE[J]. Eur Radiol, 2021, 31(10): 7500-7511. DOI: 10.1007/s00330-021-07910-0.
[23]
ZHAO Y, WANG N, WU J J, et al. Radiomics analysis based on contrast-enhanced MRI for prediction of therapeutic response to transarterial chemoembolization in hepatocellular carcinoma[J/OL]. Front Oncol, 2021, 11: 582788 [2023-04-18]. https://doi.org/10.3389/fonc.2021.582788. DOI: 10.3389/fonc.2021.582788.
[24]
CANNELLA R, CAMMÀ C, MATTEINI F, et al. Radiomics analysis on gadoxetate disodium-enhanced MRI predicts response to transarterial embolization in patients with HCC[J/OL]. Diagnostics, 2022, 12(6): 1308 [2023-04-18]. https://doi.org/10.3390/diagnostics12061308. DOI: 10.3390/diagnostics12061308.
[25]
ANSARI D, ANDERSSON R. Radiofrequency ablation or percutaneous ethanol injection for the treatment of liver tumors[J]. World J Gastroenterol, 2012, 18(10): 1003-1008. DOI: 10.3748/wjg.v18.i10.1003.
[26]
HORVAT N, ARAUJO-FILHO J A B, ASSUNCAO-JR A N, et al. Radiomic analysis of MRI to predict sustained complete response after radiofrequency ablation in patients with hepatocellular carcinoma - A pilot study[J/OL]. Clinics, 2021, 76: e2888 [2023-04-18]. https://doi.org/10.6061/clinics/2021/e2888. DOI: 10.6061/clinics/2021/e2888.
[27]
ZHANG L, CAI P Q, HOU J Y, et al. Radiomics model based on gadoxetic acid disodium-enhanced MR imaging to predict hepatocellular carcinoma recurrence after curative ablation[J]. Cancer Manag Res, 2021, 13: 2785-2796. DOI: 10.2147/CMAR.S300627.
[28]
PENG W, JIANG X H, ZHANG W D, et al. A radiomics-based model can predict recurrence-free survival of hepatocellular carcinoma after curative ablation[J]. Asian J Surg, 2023, 46(7): 2689-2696. DOI: 10.1016/j.asjsur.2022.09.130.
[29]
GIGANTE E, HADDAD Y, NAULT J C, et al. Imaging and histological features of tumor biopsy sample predict aggressive intrasegmental recurrence of hepatocellular carcinoma after radiofrequency ablation[J/OL]. Sci Rep, 2022, 12(1): 18712 [2023-04-23]. https://doi.org/10.1038/s41598-022-23315-5. DOI: 10.1038/s41598-022-23315-5.
[30]
KANG T W, LIM H K, LEE M W, et al. Aggressive intrasegmental recurrence of hepatocellular carcinoma after radiofrequency ablation: risk factors and clinical significance[J]. Radiology, 2015, 276(1): 274-285. DOI: 10.1148/radiol.15141215.
[31]
LIU Z H, ZHOU Y K, ZHANG P, et al. Meta-analysis of the therapeutic effect of hepatectomy versus radiofrequency ablation for the treatment of hepatocellular carcinoma[J]. Surg Laparosc Endosc Percutan Tech, 2010, 20(3): 130-140. DOI: 10.1097/SLE.0b013e3181d823df.
[32]
LV X L, CHEN M J, KONG C L, et al. Construction of a novel radiomics nomogram for the prediction of aggressive intrasegmental recurrence of HCC after radiofrequency ablation[J/OL]. Eur J Radiol, 2021, 144: 109955 [2023-04-18]. https://doi.org/10.1038/s41598-022-23315-5. DOI: 10.1016/j.ejrad.2021.109955.
[33]
WAKABAYASHI T, OUHMICH F, GONZALEZ-CABRERA C, et al. Radiomics in hepatocellular carcinoma: a quantitative review[J]. Hepatol Int, 2019, 13(5): 546-559. DOI: 10.1007/s12072-019-09973-0.
[34]
ZENG Z C, CHEN Y X. Consensus on radiation therapy for primary liver cancer (2020)[J]. J Clin Hepatol, 2021, 37(2): 296-301. DOI: 10.3969/j.issn.1001-5256.2021.02.010.
[35]
FONTAINE P, RIET F G, CASTELLI J, et al. Comparison of feature selection in radiomics for the prediction of overall survival after radiotherapy for hepatocellular carcinoma[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 1667-1670. DOI: 10.1109/EMBC44109.2020.9176724.
[36]
DU S S, CHEN G W, YUAN B Y, et al. DNA sensing and associated type 1 interferon signaling contributes to progression of radiation-induced liver injury[J]. Cell Mol Immunol, 2021, 18(7): 1718-1728. DOI: 10.1038/s41423-020-0395-x.
[37]
ZHOU Y J, TANG Y, LIU S J, et al. Radiation-induced liver disease: beyond DNA damage[J]. Cell Cycle, 2023, 22(5): 506-526. DOI: 10.1080/15384101.2022.2131163.
[38]
SHEN P C, HUANG W Y, DAI Y H, et al. Radiomics-based predictive model of radiation-induced liver disease in hepatocellular carcinoma patients receiving stereo-tactic body radiotherapy[J/OL]. Biomedicines, 2022, 10(3): 597 [2023-04-18]. https://doi.org/10.3390/biomedicines10030597. DOI: 10.3390/biomedicines10030597.
[39]
CHEN D S, MELLMAN I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637): 321-330. DOI: 10.1038/nature21349.
[40]
GNJATIC S, BRONTE V, BRUNET L R, et al. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy[J/OL]. J Immunother Cancer, 2017, 5: 44 [2023-04-18]. https://doi.org/10.1186/s40425-017-0243-4. DOI: 10.1186/s40425-017-0243-4.
[41]
HECTORS S J, LEWIS S, BESA C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(7): 3759-3769. DOI: 10.1007/s00330-020-06675-2.
[42]
BROWN Z J, GRETEN T F, HEINRICH B. Adjuvant treatment of hepatocellular carcinoma: prospect of immunotherapy[J]. Hepatology, 2019, 70(4): 1437-1442. DOI: 10.1002/hep.30633.
[43]
YUAN G S, SONG Y D, LI Q, et al. Development and validation of a contrast-enhanced CT-based radiomics nomogram for prediction of therapeutic efficacy of anti-PD-1 antibodies in advanced HCC patients[J/OL]. Front Immunol, 2020, 11: 613946 [2023-04-18]. https://doi.org/10.3389/fimmu.2020.613946. DOI: 10.3389/fimmu.2020.613946.
[44]
MIRANDA J, HORVAT N, FONSECA G M, et al. Current status and future perspectives of radiomics in hepatocellular carcinoma[J]. World J Gastroenterol, 2023, 29(1): 43-60. DOI: 10.3748/wjg.v29.i1.43.
[45]
LLOVET J M, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(4): 378-390. DOI: 10.1056/NEJMoa0708857.
[46]
TANG W W, CHEN Z Y, ZHANG W L, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects[J/OL]. Signal Transduct Target Ther, 2020, 5(1): 87 [2023-04-23]. https://doi.org/10.1038/s41392-020-0187-x. DOI: 10.1038/s41392-020-0187-x.
[47]
GIANNELLI G, RANI B, DITURI F, et al. Moving towards personalised therapy in patients with hepatocellular carcinoma: the role of the microenvironment[J]. Gut, 2014, 63(10): 1668-1676. DOI: 10.1136/gutjnl-2014-307323.
[48]
ZHANG C, JIANG W Q, DING J. New insights on sorafenib resistance in liver cancer with correlation of individualized therapy[J/OL]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188382 [2023-04-18]. https://doi.org/10.1016/j.bbcan.2020.188382. DOI: 10.1016/j.bbcan.2020.188382.
[49]
LLOVET J M, MONTAL R, SIA D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15(10): 599-616. DOI: 10.1038/s41571-018-0073-4.
[50]
HUANG C, ZHU X D, SHEN Y H, et al. Organ specific responses to first-line lenvatinib plus anti-PD-1 antibodies in patients with unresectable hepatocellular carcinoma: a retrospective analysis[J/OL]. Biomark Res, 2021, 9(1): 19 [2023-04-18]. https://doi.org/10.1186/s40364-021-00274-z. DOI: 10.1186/s40364-021-00274-z.
[51]
ZHU X D, HUANG C, SHEN Y H, et al. Downstaging and resection of initially unresectable hepatocellular carcinoma with tyrosine kinase inhibitor and anti-PD-1 antibody combinations[J]. Liver Cancer, 2021, 10(4): 320-329. DOI: 10.1159/000514313.
[52]
SHENG R F, ZENG M S, JIN K P, et al. MRI-based nomogram predicts the risk of progression of unresectable hepatocellular carcinoma after combined lenvatinib and anti-PD-1 antibody therapy[J]. Acad Radiol, 2022, 29(6): 819-829. DOI: 10.1016/j.acra.2021.09.004.
[53]
LUO J P, HUANG Z M, WANG M R, et al. Prognostic role of multiparameter MRI and radiomics in progression of advanced unresectable hepatocellular carcinoma following combined transcatheter arterial chemoembolization and lenvatinib therapy[J/OL]. BMC Gastroenterol, 2022, 22(1): 108 [2023-04-18]. https://doi.org/10.1186/s12876-022-02129-9. DOI: 10.1186/s12876-022-02129-9.

PREV Research progress of artificial intelligence measurement technology for three-dimensional volume of breast cancer based on dynamic contrast-enhanced magnetic resonance imaging
NEXT Advances in artificial intelligence-based research on microvascular invasion in primary hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn