Share:
Share this content in WeChat
X
Review
Advances in artificial intelligence-based research on microvascular invasion in primary hepatocellular carcinoma
LIU Yang  JIANG Yanli  FAN Fengxian  YANG Wenxia  LI Darui  LIU Guangyao  ZHANG Jing 

LIU Y, JIANG Y L, FAN F X, et al. Advances in artificial intelligence-based research on microvascular invasion in primary hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(9): 159-164. DOI:10.12015/issn.1674-8034.2023.09.029.


[Abstract] Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system with a high degree of malignancy and poor prognosis. Microvascular invasion (MVI) usually refers to a cluster of cancer cells in the vascular cavity covered by endocrine cells under the microscope. Currently, MVI is generally considered to correlate closely with the recurrence and metastasis of HCC. Therefore, it is essential to predict MVI accurately before surgery. However, there is still no accepted and effective method to accurately predict MVI. With the rise and development of artificial intelligence, radiomics and deep learning are increasingly used to develop individualized predictive models. Radiomics and deep learning technologies can enable deep mining of imaging information to provide more objective and comprehensive information, which can be combined with clinical information to build comprehensive models. These models can accurately assess of HCC MVI risk and help doctors develop individualized treatment strategies. This paper aims to make a comprehensive analysis of relevant studies on MVI assessment by radiomics techniques at home and abroad to enhance the understanding and attention of radiologists and clinicians on MVI and to provide helpful guidance for the accurate assessment and treatment planning of clinical MVI, as well as the prognosis judgment of HCC patients, to improve the diagnosis and treatment results of HCC patients, increase the survival rate, and provide a basis for the realization of the big data medical environment guided by this will provide a basis for individualized and precise treatment under the guidance of big data medical environment.
[Keywords] hepatocellular carcinoma;microvascular invasion;radiomics;preoperative prediction;deep learning

LIU Yang1, 2   JIANG Yanli1, 3   FAN Fengxian1, 3   YANG Wenxia1, 2   LI Darui1, 2   LIU Guangyao1   ZHANG Jing1, 2, 3*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730030, China

3 Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China

Corresponding author: Zhang J, E-mail: ery_zhangjing@lzu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS Science and Technology Plan Project of Gansu Province (No. 21JR11RA122, 21JR7RA438).
Received  2023-04-09
Accepted  2023-07-21
DOI: 10.12015/issn.1674-8034.2023.09.029
LIU Y, JIANG Y L, FAN F X, et al. Advances in artificial intelligence-based research on microvascular invasion in primary hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(9): 159-164. DOI:10.12015/issn.1674-8034.2023.09.029.

[1]
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J/OL]. Nat Rev Dis Primers, 2021, 7(1): 6 [2023-06-10]. https://www.nature.com/articles/s41572-020-00240-3. DOI: 10.1038/s41572-020-00240-3.
[2]
ANWANWAN D, SINGH S K, SINGH S, et al. Challenges in liver cancer and possible treatment approaches[J/OL]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188314 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981221. DOI: 10.1016/j.bbcan.2019.188314.
[3]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[4]
MOON A M, SINGAL A G, TAPPER E B. Contemporary epidemiology of chronic liver disease and cirrhosis[J]. Clin Gastroenterol Hepatol, 2020, 18(12): 2650-2666. DOI: 10.1016/j.cgh.2019.07.060.
[5]
CHON Y E, JEONG S W, JUN D W. Hepatocellular carcinoma statistics in South Korea[J]. Clin Mol Hepatol, 2021, 27(3): 512-514. DOI: 10.3350/cmh.2021.0171.
[6]
YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
[7]
FAMULARO S, PIARDI T, MOLFINO S, et al. Factors affecting local and intra hepatic distant recurrence after surgery for hcc: an alternative perspective on microvascular invasion and satellitosis - A western European multicentre study[J]. J Gastrointest Surg, 2021, 25(1): 104-111. DOI: 10.1007/s11605-019-04503-7.
[8]
XIONG Y L, CAO P, LEI X H, et al. Accurate prediction of microvascular invasion occurrence and effective prognostic estimation for patients with hepatocellular carcinoma after radical surgical treatment[J]. World J Surg Oncol, 2022, 20(1): 328 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523961. DOI: 10.1186/s12957-022-02792-y.
[9]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[10]
SHEN A, LIU M, ZHENG D F, et al. Adjuvant transarterial chemoembolization after curative hepatectomy for hepatocellular carcinoma with microvascular invasion: a systematic review and meta-analysis[J]. Clin Res Hepatol Gastroenterol, 2020, 44(2): 142-154. DOI: 10.1016/j.clinre.2019.06.012.
[11]
JIANG Y Q, CAO S E, CAO S L, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3): 821-833. DOI: 10.1007/s00432-020-03366-9.
[12]
CHEN Z H, ZHANG X P, FENG J K, et al. Actual long-term survival in hepatocellular carcinoma patients with microvascular invasion: a multicenter study from China[J]. Hepatol Int, 2021, 15(3): 642-650. DOI: 10.1007/s12072-021-10174-x.
[13]
HAN J, LI Z L, XING H, et al. The impact of resection margin and microvascular invasion on long-term prognosis after curative resection of hepatocellular carcinoma: a multi-institutional study[J]. HPB, 2019, 21(8): 962-971. DOI: 10.1016/j.hpb.2018.11.005.
[14]
Medical Administration Bureau of the National Health Commission of the People's Republic of China. Standardization for diagnosis and treatment of hepatocellular carcinoma(2022 edition)[J]. Chin J Pract Surg, 2022, 42(3): 241-273. DOI: 10.19538/j.cjps.issn1005-2208.2022.03.01.
[15]
ZHANG E L, CHENG Q, HUANG Z Y, et al. Revisiting surgical strategies for hepatocellular carcinoma with microvascular invasion[J/OL]. Front Oncol, 2021, 11: 691354 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190326. DOI: 10.3389/fonc.2021.691354.
[16]
CHEN Z H, ZHANG X P, FENG J K, et al. Patterns, treatments, and prognosis of tumor recurrence after resection for hepatocellular carcinoma with microvascular invasion: a multicenter study from China[J]. HPB, 2022, 24(7): 1063-1073. DOI: 10.1016/j.hpb.2021.11.016.
[17]
CHUN Y S, PAWLIK T M, VAUTHEY J N. 8th edition of the AJCC cancer staging manual: pancreas and hepatobiliary cancers[J]. Ann Surg Oncol, 2018, 25(4): 845-847. DOI: 10.1245/s10434-017-6025-x.
[18]
REIG M, FORNER A, RIMOLA J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update[J]. J Hepatol, 2022, 76(3): 681-693. DOI: 10.1016/j.jhep.2021.11.018.
[19]
GAO F, QIAO K, YAN B, et al. Hybrid network with difference degree and attention mechanism combined with radiomics (H-DARnet) for MVI prediction in HCC[J]. Magn Reson Imaging, 2021, 83: 27-40. DOI: 10.1016/j.mri.2021.06.018.
[20]
IVANICS T, RAJENDRAN L, ABREU P A, et al. Long-term outcomes of ablation, liver resection, and liver transplant as first-line treatment for solitary HCC of 3 cm or less using an intention-to-treat analysis: a retrospective cohort study[J/OL]. Ann Med Surg (Lond), 2022, 77: 103645 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142643. DOI: 10.1016/j.amsu.2022.103645.
[21]
NITTA H, ALLARD M A, SEBAGH M, et al. Predictive model for microvascular invasion of hepatocellular carcinoma among candidates for either hepatic resection or liver transplantation[J]. Surgery, 2019, 165(6): 1168-1175. DOI: 10.1016/j.surg.2019.01.012.
[22]
VITALE A, HUO T L, CUCCHETTI A, et al. Survival benefit of liver transplantation versus resection for hepatocellular carcinoma: impact of MELD score[J]. Ann Surg Oncol, 2015, 22(6): 1901-1907. DOI: 10.1245/s10434-014-4099-2.
[23]
LEE S, KANG T W, SONG K D, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/SLA.0000000000003268.
[24]
CAO G S, LIU Y Y, LI L P, et al. A comparison of adverse events among radiofrequency ablation, conventional transarterial chemoembolization (TACE) and drug-eluting bead TACE in treating hepatocellular carcinoma patients[J]. Cancer Manag Res, 2021, 13: 5373-5382. DOI: 10.2147/CMAR.S308097.
[25]
KIM S S, LEE S, KIM M J. Prognostic factors of gadoxetic acid-enhanced MRI for postsurgical outcomes in multicentric hepatocellular carcinoma[J]. Eur Radiol, 2021, 31(5): 3405-3416. DOI: 10.1007/s00330-020-07419-y.
[26]
CHEN Z H, ZHANG X P, WANG H, et al. Effect of microvascular invasion on the postoperative long-term prognosis of solitary small HCC: a systematic review and meta-analysis[J]. HPB, 2019, 21(8): 935-944. DOI: 10.1016/j.hpb.2019.02.003.
[27]
DAVNALL F, YIP C S, LJUNGQVIST G, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?[J]. Insights Imaging, 2012, 3(6): 573-589. DOI: 10.1007/s13244-012-0196-6.
[28]
ZHANG D, WEI Q, WU G G, et al. Preoperative prediction of microvascular invasion in patients with hepatocellular carcinoma based on radiomics nomogram using contrast-enhanced ultrasound[J/OL]. Front Oncol, 2021, 11: 709339 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453164. DOI: 10.3389/fonc.2021.709339.
[29]
DENG J Z, JIA W D. Analysis of risk factors for microvascular invasion in hepatocellular carcinoma and construction of preoperative predictive nomogram[J]. Chin J Gen Surg, 2021, 30(7): 772-779. DOI: 10.7659/j.issn.1005-6947.2021.07.003.
[30]
HWANG S, LEE Y J, KIM K H, et al. The impact of tumor size on long-term survival outcomes after resection of solitary hepatocellular carcinoma: single-institution experience with 2558 patients[J]. J Gastrointest Surg, 2015, 19(7): 1281-1290. DOI: 10.1007/s11605-015-2849-5.
[31]
CHANDARANA H, ROBINSON E, HAJDU C H, et al. Microvascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI?[J]. AJR Am J Roentgenol, 2011, 196(5): 1083-1089. DOI: 10.2214/AJR.10.4720.
[32]
DAI S Z, LIU J Y, XIAO E H, et al. Predictive value of preoperative CT or MRI features for microvascular invasion of HCC[J]. Chin J Mod Oper Surg, 2020, 24(3): 177-182. DOI: 10.16260/j.cnki.1009-2188.2020.03.005.
[33]
ZHANG W, LIU L J, WANG P, et al. Preoperative computed tomography and serum α-fetoprotein to predict microvascular invasion in hepatocellular carcinoma[J/OL]. Medicine, 2018, 97(27): e11402 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076029. DOI: 10.1097/MD.0000000000011402.
[34]
RENZULLI M, BROCCHI S, CUCCHETTI A, et al. Can Current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?[J]. Radiology, 2016, 279(2): 432-442. DOI: 10.1148/radiol.2015150998.
[35]
YANG C, WANG H Q, SHENG R F, et al. Microvascular invasion in hepatocellular carcinoma: is it predictable with a new, preoperative application of diffusion-weighted imaging?[J]. Clin Imaging, 2017, 41: 101-105. DOI: 10.1016/j.clinimag.2016.10.004.
[36]
HUANG K, DONG Z, CAI H S, et al. Imaging biomarkers for well and moderate hepatocellular carcinoma: preoperative magnetic resonance image and histopathological correlation[J/OL]. BMC Cancer, 2019, 19(1): 364 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472074. DOI: 10.1186/s12885-019-5574-8.
[37]
SUROV A, PECH M, OMARI J, et al. Diffusion-weighted imaging reflects tumor grading and microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 10-24. DOI: 10.1159/000511384.
[38]
DU P Q, LIU Y G, HU Y. CT and MRI features and diagnostic values of microvascular infiltration in hepatocellular carcinoma[J]. Chin Hepatol, 2020, 25(2): 138-141. DOI: 10.14000/j.cnki.issn.1008-1704.2020.02.015.
[39]
ZHAO W, LIU W G, LIU H P, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma with IVIM diffusion-weighted MR imaging and Gd-EOB-DTPA-enhanced MR imaging[J/OL]. PLoS One, 2018, 13(5): e0197488 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957402. DOI: 10.1371/journal.pone.0197488.
[40]
WANG F, YAN C Y, WANG C H, et al. The roles of diffusion kurtosis imaging and intravoxel incoherent motion diffusion-weighted imaging parameters in preoperative evaluation of pathological grades and microvascular invasion in hepatocellular carcinoma[J/OL]. Front Oncol, 2022, 12: 884854 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131658. DOI: 10.3389/fonc.2022.884854.
[41]
HONG S B, CHOI S H, KIM S Y, et al. MRI features for predicting microvascular invasion of hepatocellular carcinoma: a systematic review and meta-analysis[J]. Liver Cancer, 2021, 10(2): 94-106. DOI: 10.1159/000513704.
[42]
ZHANG Y X, LV X F, QIU J L, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2021, 54(1): 134-143. DOI: 10.1002/jmri.27538.
[43]
MIN J H, LEE M W, PARK H S, et al. Interobserver variability and diagnostic performance of gadoxetic acid-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma[J]. Radiology, 2020, 297(3): 573-581. DOI: 10.1148/radiol.2020201940.
[44]
LV K, CAO X, DU P, et al. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(20): 2176-2183. DOI: 10.3748/wjg.v28.i20.2176.
[45]
TOMASZEWSKI M R, GILLIES R J. The biological meaning of radiomic features[J]. Radiology, 2021, 298(3): 505-516. DOI: 10.1148/radiol.2021202553.
[46]
HUANG J C, TIAN W W, ZHANG L L, et al. Preoperative prediction power of imaging methods for microvascular invasion in hepatocellular carcinoma: a systemic review and meta-analysis[J/OL]. Front Oncol, 2020, 10: 887 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333535. DOI: 10.3389/fonc.2020.00887.
[47]
LI L J, WU C Q, HUANG Y Q, et al. Radiomics for the preoperative evaluation of microvascular invasion in hepatocellular carcinoma: a meta-analysis[J/OL]. Front Oncol, 2022, 12: 831996 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021380/. DOI: 10.3389/fonc.2022.831996.
[48]
YAO W J, YANG S, GE Y Q, et al. Computed tomography radiomics-based prediction of microvascular invasion in hepatocellular carcinoma[J]. Front Med, 2022, 9: 819670 [2023-06-10]. https://pubmed.ncbi.nlm.nih.gov/35402463. DOI: 10.3389/fmed.2022.819670.
[49]
TONG X, LI J. Noninvasively predict the micro-vascular invasion and histopathological grade of hepatocellular carcinoma with CT-derived radiomics[J/OL]. Eur J Radiol Open, 2022, 9: 100424 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120240. DOI: 10.1016/j.ejro.2022.100424.
[50]
BANERJEE S, WANG D S, KIM H J, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma[J]. Hepatology, 2015, 62(3): 792-800. DOI: 10.1002/hep.27877.
[51]
HU F, ZHANG Y H, LI M, et al. Preoperative prediction of microvascular invasion risk grades in hepatocellular carcinoma based on tumor and peritumor dual-region radiomics signatures[J/OL]. Front Oncol, 2022, 12: 853336 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981726. DOI: 10.3389/fonc.2022.853336.
[52]
NEBBIA G, ZHANG Q, AREFAN D, et al. Pre-operative microvascular invasion prediction using multi-parametric liver MRI radiomics[J]. J Digit Imaging, 2020, 33(6): 1376-1386. DOI: 10.1007/s10278-020-00353-x.
[53]
DAI H J, LU M H, HUANG B S, et al. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging[J]. Quant Imaging Med Surg, 2021, 11(5): 1836-1853. DOI: 10.21037/qims-20-218.
[54]
QU C M, LI K, CAI P, et al. A model based on MRI radiomics features for prediction of microvascular invasion in hepatocellular carcinoma[J]. Chin J Bases Clin Gen Surg, 2021, 28(2): 175-180. DOI: 10.7507/1007-9424.202009112.
[55]
ZHONG X, LONG H Y, SU L Y, et al. Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J]. Abdom Radiol, 2022, 47(6): 2071-2088. DOI: 10.1007/s00261-022-03496-3.
[56]
SONG D J, WANG Y Y, WANG W T, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters[J]. J Cancer Res Clin Oncol, 2021, 147(12): 3757-3767. DOI: 10.1007/s00432-021-03617-3.
[57]
QIN X C, ZHU J H, TU Z Z, et al. Contrast-enhanced ultrasound with deep learning with attention mechanisms for predicting microvascular invasion in single hepatocellular carcinoma[J/OL]. Acad Radiol, 2022: S1076-S6332(22)00644-4 [2023-06-10]. https://www.academicradiology.org/article/S1076-6332(22)00644-4/fulltext. DOI: 10.1016/j.acra.2022.12.005.
[58]
ZHOU W, JIAN W W, CEN X P, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced MR and 3D convolutional neural networks[J/OL]. Front Oncol, 2021, 11: 588010 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040801. DOI: 10.3389/fonc.2021.588010.
[59]
YANG Y H, ZHOU Y, ZHOU C, et al. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma[J]. Eur J Surg Oncol, 2022, 48(5): 1068-1077. DOI: 10.1016/j.ejso.2021.11.120.
[60]
SUN B Y, GU P Y, GUAN R Y, et al. Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma[J/OL]. World J Surg Oncol, 2022, 20(1): 189 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178852. DOI: 10.1186/s12957-022-02645-8.
[61]
WEI J W, JIANG H Y, ZENG M S, et al. Prediction of microvascular invasion in hepatocellular carcinoma via deep learning: a multi-center and prospective validation study[J/OL]. Cancers, 2021, 13(10): 2368 [2023-06-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156235. DOI: 10.3390/cancers13102368.

PREV Research progress of MRI radiomics in the evaluation of curative effect of hepatocellular carcinoma
NEXT Advances and applications of artificial intelligence in liver transplantation
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn