Share:
Share this content in WeChat
X
Review
Advances and applications of artificial intelligence in liver transplantation
WANG Caiqiong  YANG Bin 

WANG C Q, YANG B. Advances and Applications of Artificial Intelligence in liver transplantation[J]. Chin J Magn Reson Imaging, 2023, 14(9): 165-170. DOI:10.12015/issn.1674-8034.2023.09.030.


[Abstract] Liver transplantation (LT) is the primary treatment for end-stage liver disease, which mainly includes hepatocellular carcinoma (HCC) and end-stage cirrhosis. Radiomics and deep learning (DL), which identify subtle features invisible to the human eye from medical imaging images routinely used, which are increasingly being used to predict tumor recurrence after LT. Previous studies mainly focused on the preoperative prediction of tumor recurrence based on radiomics and DL images. It is hoped that more studies will be conducted to predict various complications after LT in the future. This paper mainly analyzes the research progress of radiomics and DL in the prognosis of LT from four aspects: ultrasound, CT, MRI and positron emission computed tomography (PET), including the similarities and differences of previous studies, the advantages and disadvantages of the four imaging methods in the evaluation of postoperative complications of LT. Finally, based on previous studies, the limitations and future development direction of radiomics and DL are summarized. The purpose of this paper is to improve readers' understanding of LT, enhance the awareness of imaging physicians and clinicians on the prevention, early diagnosis and early treatment of complications in patients after LT, helping the accurate and individualized treatment of patients after LT, improving the survival rate of patients after LT and improving the prognosis of patients.
[Keywords] liver transplantation;hepatocellular carcinoma;prognosis;magnetic resonance imaging;radiomics;deep learning

WANG Caiqiong1, 2   YANG Bin2*  

1 School of Clinical Medical, Dali University, Dali 671000, China

2 Department of Medical Imaging, the First People's Hospital of Kunming, Kunming 650051, China

Corresponding author: Yang B, E-mail: yangbinapple@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Yunnan Province Major Special Plan (No. 202302AA310018-D-8); Yunnan Province "Yunnan Talents Support Program" Special Project for Young Talents (No. XDYC-QNRC-2022-0608); Special Project of Clinical Medical Center of Yunnan Provincial Organ Transplantation Center (No. 2021YZ-ZX-05); Kunming Health Science and Technology personnel training project "Ten hundred thousand" engineering personnel projec [No. 2022-SW (Reserve)-01]; 2023 Kunming Health Science and Technology Talent Training Project (Medical Technology Center) [No. 2023-SW (Technology)-13].
Received  2023-03-16
Accepted  2023-08-09
DOI: 10.12015/issn.1674-8034.2023.09.030
WANG C Q, YANG B. Advances and Applications of Artificial Intelligence in liver transplantation[J]. Chin J Magn Reson Imaging, 2023, 14(9): 165-170. DOI:10.12015/issn.1674-8034.2023.09.030.

[1]
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J, 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
[2]
VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. DOI: 10.1016/S0140-6736(22)01200-4.
[3]
VERNA E C, PATEL Y A, AGGARWAL A, et al. Liver transplantation for hepatocellular carcinoma: management after the transplant[J]. Am J Transplant, 2020, 20(2): 333-347. DOI: 10.1111/ajt.15697.
[4]
KASSEL C A, WILKE T J, FREMMING B A, et al. 2021 clinical update in liver transplantation[J]. J Cardiothorac Vasc Anesth, 2022, 36(11): 4183-4191. DOI: 10.1053/j.jvca.2022.05.027.
[5]
HOFFMAN D, MEHTA N. Recurrence of hepatocellular carcinoma following liver transplantation[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(1): 91-102. DOI: 10.1080/17474124.2021.1823213.
[6]
HU Y W, XU Y T, MINTZ R L, et al. Self-intensified synergy of a versatile biomimetic nanozyme and doxorubicin on electrospun fibers to inhibit postsurgical tumor recurrence and metastasis[J/OL]. Biomaterials, 2023, 293: 121942 [2023-06-18]. https://doi.org/10.1016/j.biomaterials.2022.121942. DOI: 10.1016/j.biomaterials.2022.121942.
[7]
AQUINA C T, ESKANDER M F, PAWLIK T M. Liver-directed treatment options following liver tumor recurrence: a review of the literature[J/OL]. Front Oncol, 2022, 12: 832405 [2023-06-18]. https://doi.org/10.3389/fonc.2022.832405. DOI: 10.3389/fonc.2022.832405.
[8]
WANG M Y, LU Z Y. Imaging evaluation of complications after liver transplantation[J]. J Clin Hepatol, 2016, 32(12): 2295-2299. DOI: 10.3969/j.issn.1001-5256.2016.12.013.
[9]
CRAIG E V, HELLER M T. Complications of liver transplant[J]. Abdom Radiol (NY), 2021, 46(1): 43-67. DOI: 10.1007/s00261-019-02340-5.
[10]
ASTARCIOGLU I, EGELI T, GULCU A, et al. Vascular complications after liver transplantation[J]. Exp Clin Transplant, 2023, 21(6): 504-511. DOI: 10.6002/ect.2018.0240.
[11]
FORDE J J, BHAMIDIMARRI K R. Management of biliary complications in liver transplant recipients[J]. Clin Liver Dis, 2022, 26(1): 81-99. DOI: 10.1016/j.cld.2021.08.008.
[12]
BUROS C, DAVE A A, FURLAN A. Immediate and late complications after liver transplantation[J]. Radiol Clin North Am, 2023, 61(5): 785-795. DOI: 10.1016/j.rcl.2023.04.002.
[13]
CHEN C J, YANG D, GAO S L, et al. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation[J/OL]. Respir Res, 2021, 22(1): 94 [2023-07-29]. https://doi.org/10.1186/s12931-021-01690-3. DOI: 10.1186/s12931-021-01690-3.
[14]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[15]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[16]
LAFATA K J, WANG Y Q, KONKEL B, et al. Radiomics: a primer on high-throughput image phenotyping[J]. Abdom Radiol, 2022, 47(9): 2986-3002. DOI: 10.1007/s00261-021-03254-x.
[17]
GORE J C. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68: A1-A4. DOI: 10.1016/j.mri.2019.12.006.
[18]
ZHOU L Q, WANG J Y, YU S Y, et al. Artificial intelligence in medical imaging of the liver[J]. World J Gastroenterol, 2019, 25(6): 672-682. DOI: 10.3748/wjg.v25.i6.672.
[19]
CHOI R Y, COYNER A S, KALPATHY-CRAMER J, et al. Introduction to machine learning, neural networks, and deep learning[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 14 [2023-07-29]. https://doi.org/10.1167/tvst.9.2.14. DOI: 10.1167/tvst.9.2.14.
[20]
BINCZYK F, PRAZUCH W, BOZEK P, et al. Radiomics and artificial intelligence in lung cancer screening[J]. Transl Lung Cancer Res, 2021, 10(2): 1186-1199. DOI: 10.21037/tlcr-20-708.
[21]
CURRIE G, HAWK K E, ROHREN E, et al. Machine learning and deep learning in medical imaging: intelligent imaging[J]. J Med Imaging Radiat Sci, 2019, 50(4): 477-487. DOI: 10.1016/j.jmir.2019.09.005.
[22]
CILLA S, MACCHIA G, LENKOWICZ J, et al. CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study[J]. Radiol Med, 2022, 127(7): 743-753. DOI: 10.1007/s11547-022-01505-5.
[23]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[24]
LI Z J, WANG Y Y, YU J H, et al. Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma[J/OL]. Sci Rep, 2017, 7(1): 5467 [2023-07-29]. https://doi.org/10.1038/s41598-017-05848-2. DOI: 10.1038/s41598-017-05848-2.
[25]
ZHANG X P, ZHANG Y C, ZHANG G J, et al. Deep learning with radiomics for disease diagnosis and treatment: challenges and potential[J/OL]. Front Oncol, 2022, 12: 773840 [2023-07-29]. https://doi.org/10.3389/fonc.2022.773840. DOI: 10.3389/fonc.2022.773840.
[26]
AVANZO M, WEI L S, STANCANELLO J, et al. Machine and deep learning methods for radiomics[J/OL]. Med Phys, 2020, 47(5): e185-e202 [2023-07-29]. https://doi.org/10.1002/mp.13678. DOI: 10.1002/mp.13678.
[27]
YUAN Y, TANG Y, NIU N N, et al. Ultrasound-based radiomics analysis for differentiating post-transplant lymphoproliferative disorders from reactive lymph node hyperplasia after pediatric liver transplantation[J]. Chin J Ultrasound Med, 2023, 39(5): 540-544. DOI: 10.3969/j.issn.1002-0101.2023.05.018.
[28]
KOHLI D R, DESAI M V, KENNEDY K F, et al. Patients with post-transplant biliary strictures have significantly higher rates of liver transplant failure and rejection: a nationwide inpatient analysis[J]. J Gastroenterol Hepatol, 2021, 36(7): 2008-2014. DOI: 10.1111/jgh.15388.
[29]
KIMURA Y, SOSA R T, SOTO-TRUJILLO D, et al. Liver transplant complications radiologist can't miss[J/OL]. Cureus, 2020, 12(6): e8465 [2023-06-18]. https://doi.org/10.7759/cureus.8465. DOI: 10.7759/cureus.8465.
[30]
MOY B T, BIRK J W. A review on the management of biliary complications after orthotopic liver transplantation[J]. J Clin Transl Hepatol, 2019, 7(1): 61-71. DOI: 10.14218/JCTH.2018.00028.
[31]
GABALLA D, BEZINOVER D, KADRY Z, et al. Development of a model to predict portal vein thrombosis in liver transplant candidates: the portal vein thrombosis risk index[J]. Liver Transpl, 2019, 25(12): 1747-1755. DOI: 10.1002/lt.25630.
[32]
DUMORTIER J, BESCH C, MOGA L, et al. Non-invasive diagnosis and follow-up in liver transplantation[J/OL]. Clin Res Hepatol Gastroenterol, 2022, 46(1): 101774 [2023-06-18]. https://doi.org/10.1016/j.clinre.2021.101774. DOI: 10.1016/j.clinre.2021.101774.
[33]
SMOTER P, KRASNODĘBSKI M, FIGIEL W, et al. The effect of early retransplantation on early and late survival after liver transplantation[J]. Transplant Proc, 2022, 54(4): 1007-1010. DOI: 10.1016/j.transproceed.2022.03.018.
[34]
JI G W, ZHU F P, XU Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study[J]. EBioMedicine, 2019, 50: 156-165. DOI: 10.1016/j.ebiom.2019.10.057.
[35]
GUO D H, GU D S, WANG H H, et al. Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation[J]. Eur J Radiol, 2019, 117: 33-40. DOI: 10.1016/j.ejrad.2019.05.010.
[36]
IVANICS T, SALINAS-MIRANDA E, ABREU P, et al. A pre-TACE radiomics model to predict HCC progression and recurrence in liver transplantation: a pilot study on a novel biomarker[J]. Transplantation, 2021, 105(11): 2435-2444. DOI: 10.1097/TP.0000000000003605.
[37]
GALDINO-VASCONCELOS M R, FEIJÓ M S, FERRO H M, et al. Preoperative alpha-fetoprotein and radiological total tumor diameter as predictors of hepatocellular carcinoma recurrence after liver transplantation[J]. Transplant Proc, 2022, 54(5): 1333-1340. DOI: 10.1016/j.transproceed.2022.02.065.
[38]
HE T C, FONG J N, MOORE L W, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J/OL]. Comput Med Imaging Graph, 2021, 89: 101894 [2023-06-18]. https://doi.org/10.1016/j.compmedimag.2021.101894. DOI: 10.1016/j.compmedimag.2021.101894.
[39]
MIAO W J, NIE P, YANG G J, et al. An FDG PET/CT metabolic parameter-based nomogram for predicting the early recurrence of hepatocellular carcinoma after liver transplantation[J]. Eur J Nucl Med Mol Imaging, 2021, 48(11): 3656-3665. DOI: 10.1007/s00259-021-05328-w.
[40]
ZUCCHETTA P, LACOGNATA C, GIRARDI F, et al. 18F]FDG PET/MRI in the follow-up of hepatocellular carcinoma after liver transplantation[J]. Nucl Med Commun, 2022, 43(3): 359-367. DOI: 10.1097/MNM.0000000000001518.
[41]
HECTORS S J, WAGNER M, BESA C, et al. Multiparametric FDG-PET/MRI of hepatocellular carcinoma: initial experience[J/OL]. Contrast Media Mol Imaging, 2018, 2018: 5638283 [2023-07-29]. https://doi.org/10.1155/2018/5638283. DOI: 10.1155/2018/5638283.
[42]
ZHANG Z, WEI X W. Artificial intelligence-assisted selection and efficacy prediction of antineoplastic strategies for precision cancer therapy[J]. Semin Cancer Biol, 2023, 90: 57-72. DOI: 10.1016/j.semcancer.2023.02.005.
[43]
KURANT D E. Opportunities and challenges with artificial intelligence in genomics[J]. Clin Lab Med, 2023, 43(1): 87-97. DOI: 10.1016/j.cll.2022.09.007.
[44]
KELLY C J, KARTHIKESALINGAM A, SULEYMAN M, et al. Key challenges for delivering clinical impact with artificial intelligence[J/OL]. BMC Med, 2019, 17(1): 195 [2023-06-18]. https://doi.org/10.1186/s12916-019-1426-2. DOI: 10.1186/s12916-019-1426-2.
[45]
VANHOLDER R, DOMÍNGUEZ-GIL B, BUSIC M, et al. Organ donation and transplantation: a multi-stakeholder call to action[J]. Nat Rev Nephrol, 2021, 17(8): 554-568. DOI: 10.1038/s41581-021-00425-3.
[46]
BOEKEN T, FEYDY J, LECLER A, et al. Artificial intelligence in diagnostic and interventional radiology: where are we now?[J]. Diagn Interv Imaging, 2023, 104(1): 1-5. DOI: 10.1016/j.diii.2022.11.004.
[47]
KARVELLAS C J, FRANCOZ C, WEISS E. Liver transplantation in acute-on-chronic liver failure[J]. Transplantation, 2021, 105(7): 1471-1481. DOI: 10.1097/TP.0000000000003550.
[48]
FLOREZ M C, BRUNER J, ZARRINPAR A. Progress and challenges in diagnosis and treatment of rejection following liver transplantation[J]. Curr Opin Organ Transplant, 2021, 26(6): 669-674. DOI: 10.1097/MOT.0000000000000924.
[49]
MONTANO-LOZA A J, RODRÍGUEZ-PERÁLVAREZ M L, PAGEAUX G P, et al. Liver transplantation immunology: immunosuppression, rejection, and immunomodulation[J]. J Hepatol, 2023, 78(6): 1199-1215. DOI: 10.1016/j.jhep.2023.01.030.
[50]
WANG H, HU X. Deep Learning in Bioinformatics and Biomedicine[J]. Methods, 2023, 209: 38-39. DOI: 10.1016/j.ymeth.2022.12.001.
[51]
JAN Y T, TSAI P S, HUANG W H, et al. Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors[J/OL]. Insights Imaging, 2023, 14(1): 68 [2023-07-29]. https://doi.org/10.1186/s13244-023-01412-x. DOI: 10.1186/s13244-023-01412-x.
[52]
WEI W T, JIA G R, WU Z Y, et al. A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on 18F-FDG PET/CT images[J]. Jpn J Radiol, 2023, 41(4): 417-427. DOI: 10.1007/s11604-022-01363-1.

PREV Advances in artificial intelligence-based research on microvascular invasion in primary hepatocellular carcinoma
NEXT The progress of magnetic resonance imaging in predicting biomarkers of ovarian cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn