Share:
Share this content in WeChat
X
Review
Research status and progress in the application of MRI quantitative techniques in osteoporosis
ZHOU Feng  LÜ Furong 

ZHOU F, LÜ F R. Research status and progress in the application of MRI quantitative techniques in osteoporosis[J]. Chin J Magn Reson Imaging, 2023, 14(9): 192-197. DOI:10.12015/issn.1674-8034.2023.09.035.


[Abstract] Osteoporosis, as a systemic skeletal metabolic disease, is characterized by low bone mass and deterioration of microstructure, which makes an individual more likely to fracture. Bone mineral density (BMD) has been the gold standard for clinically diagnosing osteoporosis and predicting the risk of fracture. However, MRI techniques are becoming increasingly important in the study of etiology, diagnosis and fracture risk of osteoporosis because of the higher tissue resolution, non-invasive and non-radiation, and the availability of information on bone quality except BMD. Compared with BMD alone, magnetic resonance spectroscopy and water-lipid separation techniques can accurately quantify the bone marrow adipose, diffusion-weighted imaging reflects the pathophysiological changes of bone marrow by assessing the diffusion properties of bone marrow tissue, high-resolution MRI can better predict osteoporotic fractures by microstructural analysis of proximal femoral trabeculae, and ultrashort echo time MRI reflects bone strength by detecting the binding water and pore water content of cortical bone. The paper reviews the application of MRI quantitative techniques in the diagnosis of osteoporosis, summarises their principles and application value, and analyses their advantages and disadvantages, with a view to providing a reference for future applications and studies related to the quantitative assessment of bone quality by MRI and the comprehensive assessment of osteoporosis progression by combined bone mineral density.
[Keywords] osteoporosis;quantitative techniques;magnetic resonance imaging;magnetic resonance spectroscopy;water-fat separation technology;diffusion-weighted imaging;high-resolution magnetic resonance imaging

ZHOU Feng   LÜ Furong*  

Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Corresponding author: Lü FY, E-mail: lfr918@sina.com

Conflicts of interest   None.

Received  2023-03-06
Accepted  2023-07-21
DOI: 10.12015/issn.1674-8034.2023.09.035
ZHOU F, LÜ F R. Research status and progress in the application of MRI quantitative techniques in osteoporosis[J]. Chin J Magn Reson Imaging, 2023, 14(9): 192-197. DOI:10.12015/issn.1674-8034.2023.09.035.

[1]
ZHANG Z Q, HO S C, CHEN Z Q, et al. Reference values of bone mineral density and prevalence of osteoporosis in Chinese adults[J]. Osteoporos Int, 2014, 25(2): 497-507. DOI: 10.1007/s00198-013-2418-2.
[2]
CHAI H, GE J R, LI L, et al. Hypertension is associated with osteoporosis: a case-control study in Chinese postmenopausal women[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 253 [2023-03-05]. https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-021-04124-9. DOI: 10.1186/s12891-021-04124-9.
[3]
GRIFFITH J F, GENANT H K. New advances in imaging osteoporosis and its complications[J]. Endocrine, 2012, 42(1): 39-51. DOI: 10.1007/s12020-012-9691-2.
[4]
GASSERT F T, KUFNER A, GASSERT F G, et al. MR-based proton density fat fraction (PDFF) of the vertebral bone marrow differentiates between patients with and without osteoporotic vertebral fractures[J]. Osteoporos Int, 2022, 33(2): 487-496. DOI: 10.1007/s00198-021-06147-3.
[5]
WANG L, LI S D, LIU Y D, et al. Greater bone marrow fat and myosteatosis are associated with lower vBMD but not asymptomatic vertebral fracture[J]. Eur Radiol, 2023, 33(1): 578-586. DOI: 10.1007/s00330-022-08979-x.
[6]
SCHMEEL F C, LUETKENS J A, ENKIRCH S J, et al. Proton density fat fraction (PDFF) MR imaging for differentiation of acute benign and neoplastic compression fractures of the spine[J]. Eur Radiol, 2018, 28(12): 5001-5009. DOI: 10.1007/s00330-018-5513-0.
[7]
TRAVLOS G S. Normal structure, function, and histology of the bone marrow[J]. Toxicol Pathol, 2006, 34(5): 548-565. DOI: 10.1080/01926230600939856.
[8]
SUROWIEC R K, ALLEN M R, WALLACE J M. Bone hydration: how we can evaluate it, what can it tell us, and is it an effective therapeutic target?[J/OL]. Bone Rep, 2022, 16: 101161 [2023-03-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718737/. DOI: 10.1016/j.bonr.2021.101161.
[9]
MCNERNY E M B, BUENING D T, AREF M W, et al. Time course of rapid bone loss and cortical porosity formation observed by longitudinal μCT in a rat model of CKD[J]. Bone, 2019, 125: 16-24. DOI: 10.1016/j.bone.2019.05.002.
[10]
MONTEIRO D A, DOLE N S, CAMPOS J L, et al. Fluid shear stress generates a unique signaling response by activating multiple TGFβ family type I receptors in osteocytes[J/OL]. FASEB J, 2021, 35(3): :e21263 [2023-03-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888383/. DOI: 10.1096/fj.202001998r.
[11]
WANG S, SUHAIMI H, MABROUK M, et al. Effects of scaffold pore morphologies on glucose transport limitations in hollow fibre membrane bioreactor for bone tissue engineering: experiments and numerical modelling[J]. Membranes, 2021, 11(4): 257 [2023-03-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065773/. DOI: 10.3390/membranes11040257.
[12]
BANI HASSAN E, GHASEM-ZADEH A, IMANI M, et al. Bone marrow adipose tissue quantification by imaging[J]. Curr Osteoporos Rep, 2019, 17(6): 416-428. DOI: 10.1007/s11914-019-00539-5.
[13]
SAEDI A A, CHEN L L, PHU S, et al. Age-related increases in marrow fat volumes have regional impacts on bone cell numbers and structure[J]. Calcif Tissue Int, 2020, 107(2): 126-134. DOI: 10.1007/s00223-020-00700-8.
[14]
LI G W, XU Z, GU H, et al. Comparison of chemical shift-encoded water-fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females[J]. J Magn Reson Imaging, 2017, 45(1): 66-73. DOI: 10.1002/jmri.25351.
[15]
SIVARAJ K K, ADAMS R H. Blood vessel formation and function in bone[J]. Development, 2016, 143(15): 2706-2715. DOI: 10.1242/dev.136861.
[16]
ZHAO Y F, XIE L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases[J]. Ann N Y Acad Sci, 2020, 1474(1): 5-14. DOI: 10.1111/nyas.14348.
[17]
HOSSEINPOUR S, HE Y, NANDA A, et al. microRNAs involved in the regulation of angiogenesis in bone regeneration[J]. Calcif Tissue Int, 2019, 105(3): 223-238. DOI: 10.1007/s00223-019-00571-8.
[18]
GRIFFITH J F, YEUNG D K, TSANG P H, et al. Compromised bone marrow perfusion in osteoporosis[J]. J Bone Miner Res, 2008, 23(7): 1068-1075. DOI: 10.1359/jbmr.080233.
[19]
ZHANG J, DONG W T, ZHAO B B, et al. Research progress on the angiogenesis-osteogenesis coupling factor of traditional Chinese medicine in the intervention of osteoporosis[J]. Chin J Osteoporos, 2023, 29(1): 151-156. DOI: 10.3969/j.issn.1006-7108.2023.01.029.
[20]
MORGAN E F, UNNIKRISNAN G U, HUSSEIN A I. Bone mechanical properties in healthy and diseased states[J]. Annu Rev Biomed Eng, 2018, 20: 119-143. DOI: 10.1146/annurev-bioeng-062117-121139.
[21]
WHITTIER D E, MANSKE S L, BILLINGTON E, et al. Hip fractures in older adults are associated with the low density bone phenotype and heterogeneous deterioration of bone microarchitecture[J]. J Bone Miner Res, 2022, 37(10): 1963-1972. DOI: 10.1002/jbmr.4663.
[22]
SOL E. Is cortical bone hip? What determines cortical bone properties?[J]. Bone, 2007, 41(1Suppl 1): S3-S8. DOI: 10.1016/j.bone.2007.03.006.
[23]
WANG F X, ZHENG L Y, THEOPOLD J, et al. Methods for bone quality assessment in human bone tissue: a systematic review[J/OL]. J Orthop Surg Res, 2022, 17(1): 174 [2023-03-05]. https://josr-online.biomedcentral.com/articles/10.1186/s13018-022-03041-4. DOI: 10.1186/s13018-022-03041-4.
[24]
PINEDA N, SHARMA P, XU Q, et al. Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy: a rapid and accurate technique[J]. Radiology, 2009, 252(2): 568-576. DOI: 10.1148/radiol.2523082084.
[25]
ZHENG H L, LI B Y, CHEN Y, et al. Quantitative study of spinal tuberculosis by HISTO and DWI sequences[J]. Chin J Magn Reson Imag, 2019, 10(5): 356-360. DOI: 10.12015/issn.1674-8034.2019.05.008.
[26]
LI G W, TANG G Y, LIU Y, et al. MR spectroscopy and micro-CT in evaluation of osteoporosis model in rabbits: comparison with histopathology[J]. Eur Radiol, 2012, 22(4): 923-929. DOI: 10.1007/s00330-011-2325-x.
[27]
MATTIOLI D, VINICOLA V, ARAGONA M, et al. Behavior during aging of bone-marrow fatty-acids profile in women's calcaneus to search for early potential osteoporotic biomarkers: a 1H-MR Spectroscopy study[J/OL]. Bone, 2022, 164: 116514 [2023-03-05]. https://www.sciencedirect.com/science/article/abs/pii/S8756328222001910?via%3Dihub. DOI: 10.1016/j.bone.2022.116514.
[28]
BAO J F, LI Z Y, ZHANG Y, et al. Low unsaturated fatty acids level in the vertebral bone marrow of postmenopausal osteoporosis: a pilot 2D iDQC-MRS on 3.0 T study[J]. J Magn Reson Imaging, 2023, 57(5): 1423-1430. DOI: 10.1002/jmri.28383.
[29]
ZHAO Y X, HUANG M Q, DING J, et al. Prediction of abnormal bone density and osteoporosis from lumbar spine MR using modified Dixon quant in 257 subjects with quantitative computed tomography as reference[J]. J Magn Reson Imaging, 2019, 49(2): 390-399. DOI: 10.1002/jmri.26233.
[30]
LI X W, LU R, XIE Y X, et al. Identification of abnormal BMD and osteoporosis in postmenopausal women with T2*-corrected Q-Dixon and reduced-FOV IVIM: correlation with QCT[J]. Eur Radiol, 2022, 32(7): 4707-4717. DOI: 10.1007/s00330-021-08531-3.
[31]
XIONG Y, HE T X, LIU W V, et al. Quantitative assessment of lumbar spine bone marrow in patients with different severity of CKD by IDEAL-IQ magnetic resonance sequence[J/OL]. Front Endocrinol, 2022, 13: 980576 [2023-03-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530399/. DOI: 10.3389/fendo.2022.980576.
[32]
PEI X J, LIAN Y F, YAN Y C, et al. Fat fraction quantification of lumbar spine: comparison of T1-weighted two-point Dixon and single-voxel magnetic resonance spectroscopy in diagnosis of multiple myeloma[J]. Diagn Interv Radiol, 2020, 26(5): 492-497. DOI: 10.5152/dir.2020.19401.
[33]
WANG M M, LI X F, LI G W, et al. Bone marrow fat quantification: comparison of mDixon and MRS[J]. J Clin Radiol, 2018, 37(11): 1892-1896. DOI: 10.13437/j.cnki.jcr.2018.11.030.
[34]
BIFFAR A, DIETRICH O, SOURBRON S, et al. Diffusion and perfusion imaging of bone marrow[J]. Eur J Radiol, 2010, 76(3): 323-328. DOI: 10.1016/j.ejrad.2010.03.011.
[35]
MOMENI M, ASADZADEH M, MOWLA K, et al. Sensitivity and specificity assessment of DWI and ADC for the diagnosis of osteoporosis in postmenopausal patients[J]. Radiol Med, 2020, 125(1): 68-74. DOI: 10.1007/s11547-019-01080-2.
[36]
YANG H, CUI X J, ZHENG X Z, et al. Preliminary quantitative analysis of vertebral microenvironment changes in type 2 diabetes mellitus using FOCUS IVIM-DWI and IDEAL-IQ sequences[J]. Magn Reson Imaging, 2021, 84: 84-91. DOI: 10.1016/j.mri.2021.09.008.
[37]
ZHANG X, PANG H, DONG Y, et al. A study of dynamic contrast-enhanced MR imaging features and influence factors of pelvic bone marrow in adult females[J]. Osteoporos Int, 2019, 30(12): 2469-2476. DOI: 10.1007/s00198-019-05145-w.
[38]
GRIFFITH J F, YEUNG D K, LEUNG J C, et al. Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy[J]. Eur Radiol, 2011, 21(6): 1160-1169. DOI: 10.1007/s00330-010-2054-6.
[39]
HUANG Z H, LIN Q, WANG J W, et al. Relationship between quantitative parameters of lumbar vertebral perfusion and bone mineral density (BMD) in postmenopausal women[J]. Adv Clin Exp Med, 2019, 28(8): 1005-1011. DOI: 10.17219/acem/94150.
[40]
KRUG R, BANERJEE S, HAN E T, et al. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur[J]. Osteoporos Int, 2005, 16(11): 1307-1314. DOI: 10.1007/s00198-005-1907-3.
[41]
CHANG G, RAJAPAKSE C S, CHEN C, et al. 3-T MR imaging of proximal femur microarchitecture in subjects with and without fragility fracture and nonosteoporotic proximal femur bone mineral density[J]. Radiology, 2018, 287(2): 608-619. DOI: 10.1148/radiol.2017170138.
[42]
PEKEDIS M, OZAN F, YILDIZ H. Biomechanics of the femoral head cartilage and subchondral trabecular bone in osteoporotic and osteopenic fractures[J]. Ann Biomed Eng, 2021, 49(12): 3388-3400. DOI: 10.1007/s10439-021-02861-5.
[43]
JERBAN S, CHANG D G, MA Y J, et al. An update in qualitative imaging of bone using ultrashort echo time magnetic resonance[J/OL]. Front Endocrinol, 2020, 11: 555756 [2023-03-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551122/. DOI: 10.3389/fendo.2020.555756.
[44]
CHANG E Y, DU J, CHUNG C B. UTE imaging in the musculoskeletal system[J]. J Magn Reson Imaging, 2015, 41(4): 870-883. DOI: 10.1002/jmri.24713.
[45]
MANHARD M K, UPPUGANTI S, GRANKE M, et al. MRI-derived bound and pore water concentrations as predictors of fracture resistance[J]. Bone, 2016, 87: 1-10. DOI: 10.1016/j.bone.2016.03.007.
[46]
JERBAN S, MA Y J, WONG J H, et al. Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure[J]. Bone, 2019, 123: 8-17. DOI: 10.1016/j.bone.2019.03.013.
[47]
LIU J, CHEN J D, LI P, et al. Comprehensive assessment of osteoporosis in lumbar spine using compositional MR imaging of trabecular bone[J]. Eur Radiol, 2023, 33(6): 3995-4006. DOI: 10.1007/s00330-022-09368-0.
[48]
LIU J, LIAO J W, LI W, et al. Assessment of osteoporosis in lumbar spine: in vivo quantitative MR imaging of collagen bound water in trabecular bone[J]. Front Endocrinol, 2022, 13: 801930 [2023-03-05]. https://pubmed.ncbi.nlm.nih.gov/35250862/. DOI: 10.3389/fendo.2022.801930.

PREV Advances in deep learning and Radiomics for precision diagnosis and treatment of bladder cancer
NEXT Advances in diffusion MRI based on oscillating gradient spin echo
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn