Share:
Share this content in WeChat
X
Clinical Article
A study of altered resting state and dynamic functional connectivity characteristics of the hippocampus bilaterally in first-episode depression
CAO Jiudong  WANG Xiaoling  ZHANG Lei  HONG Yang  ZHANG Guolei  BAO Yan  LUO Ping  SUN Li  HAN Ming  LÜ Xueyu  LIU Jun  YAO Xiaoyan  LI Shanshan  SUN Jifei  FANG Jiliang 

Cite this article as: CAO J D, WANG X L, ZHANG L, et al. A study of altered resting state and dynamic functional connectivity characteristics of the hippocampus bilaterally in first-episode depression[J]. Chin J Magn Reson Imaging, 2023, 14(10): 7-11, 30. DOI:10.12015/issn.1674-8034.2023.10.002.


[Abstract] Objective To observe bilateral hippocampal static state and dynamic functional connectivity (dFC) features and association with clinical symptoms in first episode depression (FDE).Materials and Methods Twenty-six FDE patients (FDE group) and 20 healthy controls (HCs group) were retrospectively included. rs-fMRI scans were performed on the two groups of subjects, and after using the bilateral hippocampus as the seed point, the resting state functional connectivity (sFC) and dynamic functional connectivity (dFC) differences between the two groups were observed. The differences of sFC and dFC between the two groups were observed, and the clinical depression scale of FDE patients was completed to analyze the correlation between the different brain regions and clinical symptoms.Results Compared with the HCs group, the sFC of the left hippocampus with the right orbitofrontal middle gyrus was decreased in the FDE group, and the sFC of the right hippocampus with the right precentral gyrus was decreased. Compared with the HCs group, the dFC of the left hippocampus with the right supplementary motor area and the right precentral gyrus was decreased in the FDE group, and the dFC of the right hippocampus with the left precentral gyrus was decreased and increased with the dFC of the right inferior occipital gyrus. Correlation analysis revealed a positive correlation between dFC values in the right hippocampus with the right suboccipital gyrus and 24-item Hamilton Rating Scale for Depression, scores in the FDE group (r=0.474, P=0.015).Conclusions The presence of abnormal alterations in the sFC of the hippocampus and reward network and sensorimotor network bilaterally with abnormal alterations in the dFC of the sensorimotor network and visual processing cortex in FDE patients provides some implications for understanding the neuropathological mechanisms and targeted therapies in FDE patients.
[Keywords] first-episode depression;resting-state functional magnetic resonance imaging;magnetic resonance imaging;hippocampus;state functional connectivity;dynamic functional connectivity

CAO Jiudong1   WANG Xiaoling1*   ZHANG Lei1   HONG Yang1   ZHANG Guolei1   BAO Yan1, 2   LUO Ping1   SUN Li1   HAN Ming1   LÜ Xueyu1   LIU Jun1   YAO Xiaoyan1   LI Shanshan1   SUN Jifei1   FANG Jiliang1  

1 Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China

2 Department of Radiology, Dalian Branch of Shengjing Hospital Affiliated to China Medical University, Dalian 116600, China

Corresponding author: WANG X L, E-mail: wxlwrw@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81303056); Science and Technology Innovation Project of China Academy of Chinese Medical Sciences (No. CI2021A03304, CI2021A03312, CI2021A03106)
Received  2023-06-09
Accepted  2023-09-27
DOI: 10.12015/issn.1674-8034.2023.10.002
Cite this article as: CAO J D, WANG X L, ZHANG L, et al. A study of altered resting state and dynamic functional connectivity characteristics of the hippocampus bilaterally in first-episode depression[J]. Chin J Magn Reson Imaging, 2023, 14(10): 7-11, 30. DOI:10.12015/issn.1674-8034.2023.10.002.

[1]
BLAZER D G. Depression in late life: review and commentary[J]. J Gerontol A Biol Sci Med Sci, 2003, 58(3): 249-265. DOI: 10.1093/gerona/58.3.m249.
[2]
GHASEMI M, PHILLIPS C, TRILLO L, et al. The role of NMDA receptors in the pathophysiology and treatment of mood disorders[J]. Neurosci Biobehav Rev, 2014, 47: 336-358. DOI: 10.1016/j.neubiorev.2014.08.017.
[3]
XIA C Y, WANG Z Z, YAMAKUNI T, et al. A novel mechanism of depression: role for connexins[J]. Eur Neuropsychopharmacol, 2018, 28(4): 483-498. DOI: 10.1016/j.euroneuro.2018.01.009.
[4]
GROGANS S E, FOX A S, SHACKMAN A J. The Amygdala and Depression: A sober reconsideration[J]. Am J Psychiatry, 2022, 179(7): 454-457. DOI: 10.1176/appi.ajp.20220412.
[5]
ZHANG B, WANG F, DONG H M, et al. Surface-based regional homogeneity in bipolar disorder: A resting-state fMRI study[J]. Psychiatry Res, 2019, 278: 199-204. DOI: 10.1016/j.psychres.2019.05.045.
[6]
PICÓ-PÉREZ M, VIEIRA R, FERNÁNDEZ-RODRÍGUEZ M, et al. Multimodal meta-analysis of structural gray matter, neurocognitive and social cognitive fMRI findings in schizophrenia patients[J]. Psychol Med, 2022, 52(4): 614-624. DOI: 10.1017/S0033291721005523.
[7]
HUTCHISON R M, WOMELSDORF T, ALLEN E A, et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. Neuroimage, 2013, 80: 360-378. DOI: 10.1016/j.neuroimage.2013.05.079.
[8]
QIAO D, ZHANG A, SUN N, et al. Altered static and dynamic functional connectivity of habenula associated with suicidal ideation in first-episode, drug-naïve patients with major depressive disorder[J/OL]. Front Psychiatry, 2020, 11: 608197 [2023-06-08]. https://pubmed.ncbi.nlm.nih.gov/33391057/. DOI: 10.3389/fpsyt.2020.608197.
[9]
YANG W, XU X, WANG C, et al. Alterations of dynamic functional connectivity between visual and executive-control networks in schizophrenia[J]. Brain Imaging Behav, 2022, 16(3): 1294-1302. DOI: 10.1007/s11682-021-00592-8.
[10]
ROCCA M A, HIDALGO DE LA CRUZ M, VALSASINA P, et al. Two-year dynamic functional network connectivity in clinically isolated syndrome[J]. Mult Scler, 2020, 26(6): 645-658. DOI: 10.1177/1352458519837704.
[11]
BARCH D M, TILLMAN R, KELLY D, et al. Hippocampal volume and depression among young children[J]. Psychiatry Res Neuroimaging, 2019, 288: 21-28. DOI: 10.1177/1352458519837704.
[12]
MALYKHIN N V, COUPLAND N J. Hippocampal neuroplasticity in major depressive disorder[J]. Neuroscience, 2015, 309: 200-213. DOI: 10.1016/j.neuroscience.2015.04.047.
[13]
FITZGERALD J M, WEBB E K, WEIS C N, et al. Hippocampal resting-state functional connectivity forecasts individual posttraumatic stress disorder symptoms: A data-driven approach[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(2): 139-149. DOI: 10.1016/j.bpsc.2021.08.007.
[14]
TARTT A N, MARIANI M B, HEN R, et al. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications[J]. Mol Psychiatry, 2022, 27(6): 2689-2699. DOI: 10.1038/s41380-022-01520-y.
[15]
PARSONS C E, STARK E A, YOUNG K S, et al. Understanding the human parental brain: a critical role of the orbitofrontal cortex[J]. Soc Neurosci, 2013, 8(6): 525-543. DOI: 10.1080/17470919.2013.842610.
[16]
JONKER F A, JONKER C, SCHELTENS P, et al. The role of the orbitofrontal cortex in cognition and behavior[J]. Rev Neurosci, 2015, 26(1): 1-11. DOI: 10.1515/revneuro-2014-0043.
[17]
CHAKIROVA G, WELCH K A, MOORHEAD T W, et al. Orbitofrontal morphology in people at high risk of developing schizophrenia[J]. Eur Psychiatry, 2010, 25(6): 366-372. DOI: 10.1016/j.eurpsy.2010.03.001.
[18]
ZOU K, GAO Q, LONG Z, et al. Abnormal functional connectivity density in first-episode, drug-naive adult patients with major depressive disorder[J]. J Affect Disord, 2016, 194: 153-158. DOI: 10.1016/j.jad.2015.12.081.
[19]
ZHU X, HELPMAN L, PAPINI S, et al. Altered resting state functional connectivity of fear and reward circuitry in comorbid PTSD and major depression[J]. Depress Anxiety, 2017, 34(7): 641-650. DOI: 10.1002/da.22594.
[20]
FENG R, BAO W, ZHUO L, et al. Family conflict associated with intrinsic hippocampal-OFC connectivity in adolescent depressive disorder[J/OL]. Front Psychiatry, 2022, 12: 797898 [2023-06-08]. https://pubmed.ncbi.nlm.nih.gov/35095611/. DOI: 10.3389/fpsyt.2021.797898.
[21]
WANG Z, WANG X, LIU J, et al. Acupuncture treatment modulates the corticostriatal reward circuitry in major depressive disorder[J]. J Psychiatr Res, 2017, 84: 18-26. DOI: 10.1016/j.jpsychires.2016.09.014.
[22]
KAAS J H, COLLINS C E. The organization of sensory cortex[J]. Curr Opin Neurobiol, 2001, 11(4): 498-504. DOI: 10.1016/s0959-4388(00)00240-3.
[23]
WAGER T D, SMITH E E. Neuroimaging studies of working memory: a meta-analysis[J]. Cogn Affect Behav Neurosci, 2003, 3(4): 255-274. DOI: 10.3758/cabn.3.4.255.
[24]
KLOK M P C, VAN EIJNDHOVEN P F, ARGYELAN M, et al. Structural brain characteristics in treatment-resistant depression: review of magnetic resonance imaging studies[J/OL]. BJPsych Open, 2019, 5(5): e76 [2023-06-08]. https://pubmed.ncbi.nlm.nih.gov/31474243/. DOI: 10.1192/bjo.2019.58.
[25]
GUO W, LIU F, XUE Z, et al. Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2013, 44: 51-57. DOI: 10.1016/j.pnpbp.2013.01.010.
[26]
LIU P, TU H, ZHANG A, et al. Brain functional alterations in MDD patients with somatic symptoms: A resting-state fMRI study[J]. J Affect Disord, 2021, 295: 788-796. DOI: 10.1016/j.jad.2021.08.143.
[27]
QIAO J, TAO S, WANG X, et al. Brain functional abnormalities in the amygdala subregions is associated with anxious depression[J]. J Affect Disord, 2020, 276: 653-659. DOI: 10.1016/j.jad.2020.06.077.
[28]
CHEN G, CHEN P, GONG J, et al. Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders[J]. Psychol Med, 2022, 52(4): 747-756. DOI: 10.1016/j.jad.2020.06.077.
[29]
SHUNKAI L, SU T, ZHONG S, et al. Abnormal dynamic functional connectivity of hippocampal subregions associated with working memory impairment in melancholic depression[J]. Psychol Med, 2021: 1-13. DOI: 10.1017/S0033291721004906.
[30]
YOO A H, BOLAÑOS A, HALLENBECK G E, et al. Behavioral prioritization enhances working memory precision and neural population gain[J]. J Cogn Neurosci, 2022, 34(2): 365-379. DOI: 10.1162/jocn_a_01804.
[31]
LUO Q, CHEN J, LI Y, et al. Aberrant static and dynamic functional connectivity of amygdala subregions in patients with major depressive disorder and childhood maltreatment[J]. Neuroimage Clin, 2022, 36: 103270. DOI: 10.1016/j.nicl.2022.103270.
[32]
PANG Y, CHEN H, WANG Y, et al. Transdiagnostic and diagnosis-specific dynamic functional connectivity anchored in the right anterior insula in major depressive disorder and bipolar depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 85: 7-15. DOI: 10.1016/j.pnpbp.2018.03.020.

PREV Interpretation of expert consensus on non-invasive imaging in coronary syndromes
NEXT Altered spatial and temporal concordance among intrinsic brain activity measures in Parkinson,s disease patients with severe hyposmia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn