Share:
Share this content in WeChat
X
Clinical Article
Altered spatial and temporal concordance among intrinsic brain activity measures in Parkinson's disease patients with severe hyposmia
YANG Li  WANG Ming  REN Qinghui  DUAN Aowen  WEI Anhai 

Cite this article as: YANG L, WANG M, REN Q H, et al. Altered spatial and temporal concordance among intrinsic brain activity measures in Parkinson's disease patients with severe hyposmia[J]. Chin J Magn Reson Imaging, 2023, 14(10): 12-19. DOI:10.12015/issn.1674-8034.2023.10.003.


[Abstract] Objective This study investigated the spatial and temporal coupling alterations in the brain of Parkinson's patients with severe hyposmia (PD-SH) to understand the dynamic alterations of intrinsic brain activity in the PD-SH group.Materials and Methods The resting-state functional magnetic resonance imaging data acquired from 15 PD-SH, 15 Parkinson's disease patients with no/mild hyposmia (PD-N/MH), and 15 healthy controls (HC) were enrolled in this study. The volume-wise and voxel-wise concordance among four dynamic metrics was calculated. One-way analyses of variance and covariance analysis were used to compare the volume-wise and voxel-wise concordance among the PD-SH, PD-N/MH, and HC groups. The associations between concordance values and clinical/neuropsychological assessments were investigated as well.Results Compared with the PD-N/MH and HC, the PD-SH had lower dynamic volume concordance in the whole brain (P<0.05). PD-SH showed increased voxel-wise concordance than PD-N/MH in left superior temporal gyrus, left cuneus, left postcentral gyrus and right precuneus (Gaussian random field correction, voxel level P<0.005, cluster level P<0.05). Compared with HC group, we found the decreased voxel-wise concordance in left inferior temporal gyrus, middle temporal gyrus, superior temporal gyrus and middle cingulum of PD-SH. Moreover, the decreased concordance in right middle cingulum was positively associated with the score of Odor Stick Identification Test for the Japanese in PD-SH (r=0.5251, P=0.0444).Conclusions There were some differences in the spatial and temporal concordance of intrinsic brain activity among the three groups. The analysis of concordance provided results and new insights into the neurophysiological mechanism of hyposmia in PD patients.
[Keywords] Parkinson's disease;olfactory dysfunction;resting-state functional magnetic resonance imaging;intrinsic brain activity;temporal dynamics analysis;magnetic resonance imaging

YANG Li1   WANG Ming2   REN Qinghui1   DUAN Aowen1*   WEI Anhai1  

1 Department of Medical Engineering, Daping Hospital of Army Military Medical University, Chongqing 400042, China

2 Department of Neurology, Daping Hospital of Army Military Medical University, Chongqing 400042, China

Corresponding author: DUAN A W, E-mail: duanaowen@foxmail.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Chongqing Doctoral "Fast-Service Channel" Research Project (No. CSTB2022BSXM-JCX0013); Chongqing Science and Technology Innovation Project of Social Undertaking and People's Livelihood Guarantee (No. cstc2017shmsA130074).
Received  2023-01-28
Accepted  2023-09-21
DOI: 10.12015/issn.1674-8034.2023.10.003
Cite this article as: YANG L, WANG M, REN Q H, et al. Altered spatial and temporal concordance among intrinsic brain activity measures in Parkinson's disease patients with severe hyposmia[J]. Chin J Magn Reson Imaging, 2023, 14(10): 12-19. DOI:10.12015/issn.1674-8034.2023.10.003.

[1]
SOLLA P, MASALA C, ERCOLI T, et al. Olfactory impairment correlates with executive functions disorders and other specific cognitive dysfunctions in Parkinson's disease[J/OL]. Biology, 2023, 12(1): 112 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/36671804/. DOI: 10.3390/biology12010112.
[2]
TREMBLAY C, FRASNELLI J. Olfactory-trigeminal interactions in patients with Parkinson's disease[J/OL]. Chem Senses, 2021, 46: bjab018 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/33835144/. DOI: 10.1093/chemse/bjab018.
[3]
WANG J L, XU Y, CAO X B. Research progress on the mechanism of olfactory dysfunction in Parkinson's disease[J]. J Clin Intern Med, 2022, 39(4): 283-285. DOI: 10.3969/j.issn.1001-9057.2022.04.020.
[4]
FULLARD M E, MORLEY J F, DUDA J E. Olfactory dysfunction as an early biomarker in Parkinson's disease[J]. Neurosci Bull, 2017, 33(5): 515-525. DOI: 10.1007/s12264-017-0170-x.
[5]
FRASNELLI J, SCHUSTER B, HUMMEL T. Olfactory dysfunction affects thresholds to trigeminal chemosensory sensations[J]. Neurosci Lett, 2010, 468(3): 259-263. DOI: 10.1016/j.neulet.2009.11.008.
[6]
GUO Y C, YAO L Y, SUN Z F, et al. Evaluation of chemosensory function in patients with upper respiratory tract post-viral olfactory dysfunction[J]. Chin J Otorhinolaryngol Head Neck Surg, 2022, 57(1): 29-35. DOI: 10.3760/cma.j.cn115330-20210331-00163.
[7]
REMILA Y S, WANG H. Research progress of olfactory disorder in imaging of Parkinson's disease[J]. Xinjiang Med J, 2022, 52(3): 334-337. DOI: 10.3969/j.issn.1001-5183.2022.3.xjyx202203025.
[8]
OTOMUNE H, MIHARA M, HATTORI N, et al. Involvement of cortical dysfunction in frequent falls in patients with Parkinson's disease[J]. Parkinsonism Relat Disord, 2019, 64: 169-174. DOI: 10.1016/j.parkreldis.2019.04.007.
[9]
CHUNG S J, BAE Y J, JUN S, et al. Dysautonomia is associated with structural and functional alterations in Parkinson disease[J/OL]. Neurology, 2019, 92(13): e1456-e1467 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/30796135/. DOI: 10.1212/WNL.0000000000007181.
[10]
SU M L, WANG S, FANG W D, et al. Alterations in the limbic/paralimbic cortices of Parkinson's disease patients with hyposmia under resting-state functional MRI by regional homogeneity and functional connectivity analysis[J]. Parkinsonism Relat Disord, 2015, 21(7): 698-703. DOI: 10.1016/j.parkreldis.2015.04.006.
[11]
YONEYAMA N, WATANABE H, KAWABATA K, et al. Severe hyposmia and aberrant functional connectivity in cognitively normal Parkinson's disease[J/OL]. PLoS One, 2018, 13(1): e0190072 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/29304050/. DOI: 10.1371/journal.pone.0190072.
[12]
YUE Y M, JIANG Y S, SHEN T, et al. ALFF and ReHo mapping reveals different functional patterns in early- and late-onset Parkinson's disease[J/OL]. Front Neurosci, 2020, 14: 141 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/32158380/. DOI: 10.3389/fnins.2020.00141.
[13]
FAN W T, LI H, LI H Y, et al. Association between functional connectivity of entorhinal cortex and olfactory performance in Parkinson's disease[J/OL]. Brain Sci, 2022, 12(8): 963 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/35892404/. DOI: 10.3390/brainsci12080963.
[14]
WANG Y Q, WEI H Y, DU S Y, et al. Functional covariance connectivity of gray and white matter in olfactory-related brain regions in Parkinson's disease[J/OL]. Front Neurosci, 2022, 16: 853061 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/35310108/. DOI: 10.3389/fnins.2022.853061.
[15]
YU Y, LI Z Q, LIN Y J, et al. Depression affects intrinsic brain activity in patients with mild cognitive impairment[J/OL]. Front Neurosci, 2019, 13: 1333 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/31920500/. DOI: 10.3389/fnins.2019.01333.
[16]
CHEN L, BEDARD P, HALLETT M, et al. Dynamics of top-down control and motor networks in Parkinson's disease[J]. Mov Disord, 2021, 36(4): 916-926. DOI: 10.1002/mds.28461.
[17]
SHANG S A, YE J, WU J T, et al. Early disturbance of dynamic synchronization and neurovascular coupling in cognitively normal Parkinson's disease[J]. J Cereb Blood Flow Metab, 2022, 42(9): 1719-1731. DOI: 10.1177/0271678X221098503.
[18]
GAO M, FENG N N, LIU X, et al. Abnormal degree centrality in lifelong premature ejaculation patients: an fMRI study[J]. Brain Imaging Behav, 2021, 15(3): 1412-1419. DOI: 10.1007/s11682-020-00340-4.
[19]
IIJIMA M, KOBAYAKAWA T, SAITO S, et al. Smell identification in Japanese Parkinson's disease patients: using the odor stick identification test for Japanese subjects[J]. Intern Med, 2008, 47(21): 1887-1892. DOI: 10.2169/internalmedicine.47.1345.
[20]
MCCOLGAN P, EVANS J R, BREEN D P, et al. Addenbrooke's Cognitive Examination-Revised for mild cognitive impairment in Parkinson's disease[J]. Mov Disord, 2012, 27(9): 1173-1177. DOI: 10.1002/mds.25084.
[21]
PING L L, ZHOU C, SUN S, et al. Alterations in resting-state whole-brain functional connectivity pattern similarity in bipolar disorder patients[J/OL]. Brain Behav, 2022, 12(5): e2580 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/35451228/. DOI: 10.1002/brb3.2580.
[22]
ZOU Q H, ZHU C Z, YANG Y H, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[23]
ZANG Y F, JIANG T Z, LU Y L, et al. Regional homogeneity approach to fMRI data analysis[J]. NeuroImage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[24]
ZHU J J, ZHANG Y, ZHANG B, et al. Abnormal coupling among spontaneous brain activity metrics and cognitive deficits in major depressive disorder[J/OL]. J Affect Disord, 2019, 252: 74-83 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/30981059/. DOI: 10.1016/j.jad.2019.04.030.
[25]
YAN C G, YANG Z, COLCOMBE S J, et al. Concordance among indices of intrinsic brain function: insights from inter-individual variation and temporal dynamics[J]. Sci Bull, 2017, 62(23): 1572-1584. DOI: 10.1016/j.scib.2017.09.015.
[26]
TIAN Y, CHEN H B, MA X X, et al. Aberrant volume-wise and voxel-wise concordance among dynamic intrinsic brain activity indices in Parkinson's disease: a resting-state fMRI study[J/OL]. Front Aging Neurosci, 2022, 14: 814893 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/35422695/. DOI: 10.3389/fnagi.2022.814893.
[27]
LI W C, WANG C Y, LAN X F, et al. Variability and concordance among indices of brain activity in major depressive disorder with suicidal ideation: a temporal dynamics resting-state fMRI analysis[J/OL]. J Affect Disord, 2022, 319: 70-78 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/36075401/. DOI: 10.1016/j.jad.2022.08.122.
[28]
DU S Y, WANG Y Q, LI G D, et al. Olfactory functional covariance connectivity in Parkinson's disease: evidence from a Chinese population[J/OL]. Front Aging Neurosci, 2022, 14: 1071520 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/36688163/. DOI: 10.3389/fnagi.2022.1071520.
[29]
JESMANAS S, GLEIZNIENĖ R, BARANAUSKAS M, et al. Odor identification and regional gray matter atrophy in patients with Alzheimer's disease, Parkinson's disease, and the healthy elderly: a cross-sectional structural MRI study[J/OL]. Brain Sci, 2021, 11(10): 1296 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/34679361/. DOI: 10.3390/brainsci11101296.
[30]
MORBELLI S, CHIOLA S, DONEGANI M I, et al. Metabolic correlates of olfactory dysfunction in COVID-19 and Parkinson's disease (PD) do not overlap[J]. Eur J Nucl Med Mol Imaging, 2022, 49(6): 1939-1950. DOI: 10.1007/s00259-021-05666-9.
[31]
WANG S W, ZHANG Y L, LEI J Q, et al. Investigation of sensorimotor dysfunction in Parkinson disease by resting-state fMRI[J/OL]. Neurosci Lett, 2021, 742: 135512 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/33221477/. DOI: 10.1016/j.neulet.2020.135512.
[32]
LIN H, LIU Z S, YAN W, et al. Brain connectivity markers in advanced Parkinson's disease for predicting mild cognitive impairment[J]. Eur Radiol, 2021, 31(12): 9324-9334. DOI: 10.1007/s00330-021-08086-3.
[33]
CHEN X L, ONUR O A, RICHTER N, et al. Concordance of intrinsic brain connectivity measures is disrupted in Alzheimer's disease[J]. Brain Connect, 2023, 13(6): 344-355. DOI: 10.1089/brain.2020.0918.
[34]
CHEN B Y, FAN G G, LIU H, et al. Changes in anatomical and functional connectivity of Parkinson's disease patients according to cognitive status[J]. Eur J Radiol, 2015, 84(7): 1318-1324. DOI: 10.1016/j.ejrad.2015.04.014.
[35]
BIUNDO R, WEIS L, ANTONINI A. Cognitive decline in Parkinson's disease: the complex picture[J/OL]. NPJ Parkinsons Dis, 2016, 2: 16018 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/28725699/. DOI: 10.1038/npjparkd.2016.18.
[36]
THAKRAL P P, MADORE K P, SCHACTER D L. A role for the left angular gyrus in episodic simulation and memory[J]. J Neurosci, 2017, 37(34): 8142-8149. DOI: 10.1523/JNEUROSCI.1319-17.2017.
[37]
ZHANG W J, XIANG M, WANG S P. The role of left angular gyrus in the representation of linguistic composition relations[J]. Hum Brain Mapp, 2022, 43(7): 2204-2217. DOI: 10.1002/hbm.25781.
[38]
GUO W N, JIN W, LI N, et al. Brain activity alterations in patients with Parkinson's disease with cognitive impairment based on resting-state functional MRI[J]. Neurosci Lett, 2021, 747: 135672 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/33515623/. DOI: 10.1016/j.neulet.2021.135672.
[39]
TIAN Z Y, QIAN L, FANG L, et al. Frequency-specific changes of resting brain activity in Parkinson's disease: a machine learning approach[J/OL]. Neuroscience, 2020, 436: 170-183 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/32059985/. DOI: 10.1016/j.neuroscience.2020.01.049.
[40]
MEUSEL L A, GRADY C L, EBERT P E, et al. Brain-behavior relationships in source memory: effects of age and memory ability[J/OL]. Cortex, 2017, 91: 221-233 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/28161030/. DOI: 10.1016/j.cortex.2016.12.023.
[41]
HAN P F, WINKLER N, HUMMEL C, et al. Alterations of brain gray matter density and olfactory bulb volume in patients with olfactory loss after traumatic brain injury[J]. J Neurotrauma, 2018, 35(22): 2632-2640. DOI: 10.1089/neu.2017.5393.
[42]
CERF-DUCASTEL B, MURPHY C. Neural substrates of cross-modal olfactory recognition memory: an fMRI study[J]. Neuroimage, 2006, 31(1): 386-396. DOI: 10.1016/j.neuroimage.2005.11.009.
[43]
KENNEDY K M, RODRIGUE K M, BISCHOF G N, et al. Age trajectories of functional activation under conditions of low and high processing demands: an adult lifespan fMRI study of the aging brain[J/OL]. NeuroImage, 2015, 104: 21-34 [2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/25284304/. DOI: 10.1016/j.neuroimage.2014.09.056.

PREV A study of altered resting state and dynamic functional connectivity characteristics of the hippocampus bilaterally in first-episode depression
NEXT Application of synthetic MRI combined with VBM brain partition in the diagnosis of early Parkinson,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn