Share:
Share this content in WeChat
X
Clinical Article
Application of synthetic MRI combined with VBM brain partition in the diagnosis of early Parkinson's disease
CHEN Miao  ZHANG Gang  WANG Wenjia  ZHANG Rui  QI Jinpeng  LIANG Zhibo  GAO Lihong 

Cite this article as: CHEN M, ZHANG G, WANG W J, et al. Application of synthetic MRI combined with VBM brain partition in the diagnosis of early Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(10): 20-25. DOI:10.12015/issn.1674-8034.2023.10.004.


[Abstract] Objective To explore the changes of brain volume and relaxation value in the early stage of early stage of Parkinson's disease (ESP) based on synthetic MRI (sMRI) technology and voxel-based morphometry (VBM) whole brain partitioning method, and provide imaging basis for the early diagnosis of this disease.Materials and Methods In this study, 22 patients with ESP were prospectively included in the ESP group, and 25 sex-and age-matched healthy control (HC) in the HC group. All subjects were scanned using GE 3.0 T MR to acquire conventional sequence, 3D T1WI and quantitative magnetic resonance imaging (MAGiC) scans, and performed Minimum Mental State Examination (MMSE) scoring. The MATLAB software SPM 12 data processing package was used to VBM whole brain partition of all data, and the gray matter volume (GMV), white matter volume (WMV) and brain region relaxation value of the whole brain and each brain region in different cortical and subcortical regions were obtained. The volume characteristics and brain region relaxation values between ESP group and HC group were compared, and the volume of brain regions, T1, T2 and proton density (PrD) values and MMSE scores were analyzed in the case group. The ROC curve was made for the brain region with the most obvious difference in correlation analysis results, and the relaxation values of each sequence were jointly diagnosed in this brain region.Results There were more cases in which the volume of brain regions correlated with clinical scales (P<0.05). There were differences in the relaxation values of some brain regions between the HC group and ESP, but the difference in the relaxation values of the right thalamus and the correlation with the MMSE score existed in all sequences, so the relaxation values of each sequence of the right thalamus were used for ROC diagnosis, and the relaxation values of the right thalamus in T1 and T2 sequences were used for joint diagnosis, and the AUC was 0.822 (0.697-0.911).Conclusions The results of this study showed that ESP patients had changes in right thalamic volume and brain region relaxation values. In this study, it is believed that the relaxation values of the right thalamus in the various sequences of sMRI can make an early diagnosis of PD.
[Keywords] Parkinson's disease;voxel-based morphometry;whole brain partition;synthetic magnetic resonance imaging;magnetic resonance imaging;early diagnosis

CHEN Miao1   ZHANG Gang1*   WANG Wenjia2   ZHANG Rui1   QI Jinpeng1   LIANG Zhibo1   GAO Lihong3  

1 Department of Imaging, Hulunbuir People's Hospital, Hulunbuir 021008, China

2 General Electric Medical Systems (China) Co., Ltd. Beijing Branch, Beijing 100176, China

3 Department of Neurology, Hulunbuir People's Hospital, Hulunbuir 021008, China

Corresponding author: ZHANG G, E-mail: zhangganghlbr@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Science and Technology Plan Project of Inner Mongolia Autonomous Region in 2020 (No. 2020GG0179).
Received  2023-06-19
Accepted  2023-09-19
DOI: 10.12015/issn.1674-8034.2023.10.004
Cite this article as: CHEN M, ZHANG G, WANG W J, et al. Application of synthetic MRI combined with VBM brain partition in the diagnosis of early Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(10): 20-25. DOI:10.12015/issn.1674-8034.2023.10.004.

[1]
ARSLAND D, BATZU L, HALLIDAY G M, et al. Parkinson disease-associated cognitive impairment[J/OL]. Nat Rev Dis Primers, 2021, 7(1): 53 [2023-06-19]. https://pubmed.ncbi.nlm.nih.gov/34210995/. DOI: 10.1038/s41572-021-00280-3.
[2]
TALMAN L. Quality of Life for Patients With Parkinson Disease[J]. Neurology, 2022, 98(22): 2293-2295. DOI: 10.1212/WNL.0000000000200741.
[3]
WANNEVEICH M, MOISAN F, JACQMIN-GADDA H, et al. Projections of prevalence, lifetime risk, and life expectancy of Parkinson's disease (2010–2030) in France[J]. Mov Disord, 2018, 33(9): 1449-1455. DOI: 10.1002/mds.27447.
[4]
OVERVLIET G M, MEIJER VAN DUN R E, LAMPE I K, et al. Reader response: Symptom burden among individuals with Parkinson disease: A national survey[J/OL]. Neurol Clin Pract, 2020, 10(2): 90 [2023-06-19]. https://pubmed.ncbi.nlm.nih.gov/32309021/. DOI: 10.1212/CPJ.0000000000000818.
[5]
DICKSON D W. Neuropathology of Parkinson disease[J]. Parkinsonism Relat Disord, 2018, 46(l1): 30-33. DOI: 10.1016/j.parkreldis.2017.07.033.
[6]
WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J]. Lancet Neurol, 2014, 13: 1045-1060. DOI: 10.1016/S1474-4422(14)70117-6.
[7]
REITH W. Neurodegenerative Erkrankungen[J]. Radiologe, 2018, 58: 241-258. DOI: 10.1007/s00117-018-0363-y.
[8]
KOVACS G G. Molecular Pathological Classification of Neurodegenerative Diseases[J/OL]. Int J Mol Sci, 2016, 17(2): 189 [2023-06-19]. https://pubmed.ncbi.nlm.nih.gov/26848654/. DOI: 10.3390/ijms17020189.
[9]
KALIA L V, LANG A E. Parkinson's disease[J]. Lancet, 2015, 386: 896-912. DOI: 10.1016/S0140-6736(14)61393-3.
[10]
ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: A review[J]. JAMA, 2020, 323(6): 548-560. DOI: 10.1001/jama.2019.22360.
[11]
MARSILI L, RIZZO G, COLOSIMO C. Diagnostic criteria for Parkinson's disease: From James Parkinson to the concept of prodromal disease[J/OL]. Front Neurol, 2018, 9: 156 [2023-06-19]. https://pubmed.ncbi.nlm.nih.gov/29628907/. DOI: 10.3389/fneur.2018.00156.
[12]
RIZZO G, COPETTI M, ARCUTI S, et al. Accuracy of clinical diagnosis of Parkinson disease[J]. Neurology, 2016, 86(6): 566-576. DOI: 10.1212/WNL.0000000000002350.
[13]
WARNTJES J B, LEINHARD O D, WEST J, et al. Rapid magnetic resonance quantifification on the brain: optimization for clinical usage[J]. Magn Reson Med, 2008, 60(2): 320-329. DOI: 10.1002/mrm.21635.
[14]
NEMOTO K. Understanding voxel-based morphometry[J]. Brain Nerve, 2017, 69(5): 505-511. DOI: 10.11477/mf.1416200776.
[15]
POTGIESER A R, VAN DER HOORN A, MEPPELINK A M, et al. Anterior temporal atrophy and posterior progression in patients with Parkinson's disease[J]. Neurodegener Dis, 2014, 14(3): 125-132. DOI: 10.1159/000363245.
[16]
KARAGULLE KENDI A T, LEHERICY S, LUCIANA M, et al. Altered diffusion in the frontal lobe in Parkinson disease[J]. AJNR Am J Neuroradiol, 2008, 29(3): 501-505. DOI: 10.3174/ajnr.A0850.
[17]
LOU B, JIANG Y, LI C, et al. Quantitative analysis of synthetic magnetic resonance imaging in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2021, 13: 638731 [2022-12-30]. https://pubmed.ncbi.nlm.nih.gov/33912023/. DOI: 10.3389/fnagi.2021.638731.
[18]
Yang J, Song Y, Huang J, et al. A pilot study of the association between leukoaraiosis and cerebral atherosclerosis using synthetic magnetic resonance imaging[J]. Acta Radiol, 2022, 63(11): 1546-1553. DOI: 10.1177/02841851211044970.
[19]
CAO J, XU X, ZHU J, et al. Rapid quantification of global brain volumetry and relaxometry in patients with multiple sclerosis using synthetic magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(6): 3104-3114. DOI: 10.21037/qims-21-970.
[20]
SHATTUCK D W, SANDOR-LEAHY S R, SCHAPER K A, et al. Magnetic resonance image tissue classification using a partial volume model[J]. Neuroimage, 2001, 13: 856-876, DOI: 10.1006/nimg.2000.0730.
[21]
VÅGBERG M, LINDQVIST T, AMBARKI K, et al. Automated determination of brain parenchymal fraction in multiple sclerosis[J]. AJNR Am J Neuroradiol, 2013, 34: 498-504. DOI: 10.3174/ajnr.A3262.
[22]
KASSUBEK J, TUMANI H, ECKER D, et al. Age-related brain parenchymal fraction is significantly decreased in young multiple sclerosis patients:a quantitative MRI study[J]. Neuroreport, 2003, 14: 427-430. DOI: 10.1097/00001756-200303030-00026.
[23]
XU X, HAN Q, LIN J, et al. Grey matter abnormalities in Parkinson's disease: a voxel-wise meta-analysis[J]. Eur J Neurol, 2019, 27: 653-659. DOI: 10.1111/ene.14132.
[24]
BURTON E J, MCKEITH I G, BURN D J, et al. Cerebral atrophy in Parkinson's disease with and without dementia: a comparison with Alzheimer's disease, dementia with Lewy bodies and controls[J]. Brain, 2004, 127: 791-800. DOI: 10.1093/brain/awh088.
[25]
SUMMERFIFIELD C, JUNQUÉ C, TOLOSA E, et al. Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study[J]. Arch Neurol, 2005, 62: 281-285. DOI: 10.1001/archneur.62.2.281.
[26]
TINAZ S, COURTNEY M G, STERN C E. Focal cortical and subcortical atrophy in early Parkinson's disease[J]. Mov Disord, 2011, 26: 436-441. DOI: 10.1002/mds.2345326.
[27]
PITCHER T L, MELZER T R, MACASKILL M R, et al. Reduced striatal volumes in Parkinson's disease: a magnetic resonance imaging study[J]. Transl Neurodegener, 2012, 1(1): 17. DOI: 10.1186/2047-9158-1-17.
[28]
TESSITORE A, AMBONI M, CIRILLO G, et al. Regional gray matter atrophy in patients with Parkinson disease and freezing of gait[J/OL]. AJNR Am J Neuroradiol, 2012, 33: 18041809 [2022-12-30]. https://pubmed.ncbi.nlm.nih.gov/22538070/. DOI: 10.3174/ajnr.A306628.
[29]
SCHULZ J B, SKALEJ M, WEDEKIND D, et al. Magnetic resonance imaging-based volumetry difffferentiates idiopathic Parkinson's syndrome from multiple system atrophy and progressive supranuclear palsy[J]. Ann Neurol, 1999, 45: 65-74.
[30]
CHEN S, TAN H Y, WU Z H, et al. Imaging of olfactory bulb and gray matter volumes in brain areas associated with olfactory function in patients with Parkinson's disease and multiple system atrophy[J]. Eur J Radiol, 2013, 83: 564-570. DOI: 10.1016/j.ejrad.2013.11.024.
[31]
LEE S Y, CHEN M H, CHIANG P L, et al. Reduced gray matter volume and respiratory dysfunction in Parkinson's disease: a voxel-based morphometry study[J]. BMC Neurol, 2018, 18(1): 1-8. DOI: 10.1186/s12883-018-1074-8.
[32]
BLAIR J C, BARRETT M J, PATRIE J, et al. Brain MRI reveals ascending atrophy in Parkinson's disease across severity[J/OL]. Front Neurol, 2019, 10: 1329 [2022-12-30]. https://pubmed.ncbi.nlm.nih.gov/31920949/. DOI: 10.3389/fneur.2019.01329.
[33]
ALFANO B, BRUNETTI A, COVELLI E M, et al. Unsupervised, automated segmentation of the normal brain using a multispectral relaxometric magnetic resonance approach[J]. Magn Reson Med, 1997, 37: 84-93. DOI: 10.1002/mrm.1910370113.
[34]
DOES M D. Inferring brain tissue composition and microstructure via MR relaxometry[J]. Neuroimage, 2018, 182: 136-148. DOI: 10.1016/j.neuroimage.2017.12.087.
[35]
BRAAK H, GHEBREMEDHIN E, RÜB U, et al. Stages in the development of Parkinson's disease-related pathology[J]. Cell Tissue Res, 2004, 318: 121-134. DOI: 10.1007/S00441-004-0956-9.
[36]
KHAWALDEH S, TINKHAUSER G, SHAH S A, et al. Subthalamic nucleus activity dynamics and limb movement prediction in Parkinson's disease[J]. Brain, 2020, 143(2): 582-596. DOI: 10.1093/brain/awz417.
[37]
LAURO P M, LEE S, AKBAR U. Subthalamic-cortical network reorganization during Parkinson's tremor[J]. Neurosci, 2021, 41(47): 9844-9858. DOI: 10.1523/JNEUROSCI.0854-21.2021.

PREV Altered spatial and temporal concordance among intrinsic brain activity measures in Parkinson,s disease patients with severe hyposmia
NEXT The study of diagnosing the Parkinson,s disease based on substantia nigra radiomics on susceptibility-weighted imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn