Share:
Share this content in WeChat
X
Clinical Article
Study on the synergistic effect of functional MRI on brain functional activity areas during limb linkage training in patients with Parkinson's disease
PALIDANMU·Wumaier   ALIMUJIANG·Abudukaiyoumu   WEIKELAMUJIANG·Zunong   AIJIEERGULI·Maihesumu   DAI Guozhao 

Cite this article as: PALIDANMU·W M E , ALIMUJIANG·A B D K Y M, WEIKELAMUJIANG·Z N, et al. Study on the synergistic effect of functional MRI on brain functional activity areas during limb linkage training in patients with Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(10): 31-35, 41. DOI:10.12015/issn.1674-8034.2023.10.006.


[Abstract] Objective To explore he intervention mechanism of limb linkage training on patients with Parkinson's disease (PD) by using functional MRI (fMRI).Materials and Methods Fifty patients with Parkinson's disease who visited the First People's Hospital of Kashi area from April 2021 to February 2023 were collected as the case group, and 30 healthy volunteers matched with the baseline data were selected as the control group. The whole brain fMRI scanning of the two groups of subjects during limb linkage was performed.Results In the healthy control group, the brain activation areas mainly include right primary sensory motor cortex (SM1) (t=14.4829, P<0.05), left primary sensory motor cortex (t=8.7640, P<0.05), left auxiliary motor area (SMA) (t=8.4628, P<0.05), right thalamus (t=9.3230, P<0.05), right insular lobe (t=8.8615, P<0.05), left superior temporal gyrus (t=9.0467, P<0.05) and left inferior parietal lobule (t=10.8249, P<0.05). In patients with Parkinson's disease, the brain activation areas mainly include right SM1 (t=10.0234, P<0.05), left SMA (t=7.8221, P<0.05), right insular lobe (t=6.3241, P<0.05), left superior temporal gyrus (t=7.6571, P<0.05) and left inferior parietal lobule (t=4.9862, P<0.05). Compared with the healthy control group, the left SMA (t=6.011, P<0.05), the right insular lobe (t=5.610, P<0.05) and the left superior temporal gyrus (t=6.781, P<0.05) were less activated in PD patients while the right SM1 (t=3.652, P<0.05) was more activated.Conclusions Limb linkage training enhances the compensatory function of the primary motor function area in PD patients, which has theoretical guiding significance for the rehabilitation treatment of PD patients.
[Keywords] Parkinson's disease;functional magnetic resonance imaging;magnetic resonance imaging;limb linkage training;brain functional activation

PALIDANMU·Wumaier    ALIMUJIANG·Abudukaiyoumu    WEIKELAMUJIANG·Zunong    AIJIEERGULI·Maihesumu    DAI Guozhao*  

Department of Radiology, the First People's Hospital of Kashi Area, Kashi 844000, China

Corresponding author: DAI G Z, E-mail: daiguochaoct@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of the Xinjiang Uygur Autonomous Region (No. 2021D01C022).
Received  2023-06-18
Accepted  2023-09-26
DOI: 10.12015/issn.1674-8034.2023.10.006
Cite this article as: PALIDANMU·W M E , ALIMUJIANG·A B D K Y M, WEIKELAMUJIANG·Z N, et al. Study on the synergistic effect of functional MRI on brain functional activity areas during limb linkage training in patients with Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(10): 31-35, 41. DOI:10.12015/issn.1674-8034.2023.10.006.

[1]
HU Q, TAO X, JIANG M, et al. Clinical Research Progress of Butylphthalide in the Treatment of Parkinson's Disease[J]. Herald Med, 2023, 42(2): 203-207. DOI: 10.3870/j.issn.1004-0781.2023.02.012.
[2]
WANG M J. Effect of limb linkage training instrument combined with rehabilitation training on patients with Parkinson's disease[J]. Henan Med Res, 2022, 31(23): 430-74311. DOI: 10.3969/j.issn.1004-437X.2022.23.022.
[3]
ZHANG M Y, CHEN C, XU D X, et al. Clinical study of dynamic and static balance training combined with joint training of extremities to improve the balance function and activities of daily living of patients with Parkinson's disease[J]. Chin J Geriatric Care, 2018, 16(4): 3-6.
[4]
TOLOSA E, WENNING G, POEWE W. The diagnosis of Parkinson's disease[J]. Lancet Neurol, 2006, 5(1): 75-86. DOI: 10.1016/S1474-4422(05)70285-4.
[5]
LIU X, LEI J, MA J H, et al. Serum cystatin C, serum lipids and Parkinson's disease associated with cognitive impairment[J]. Neural Injury and Functional Reconstruction, 2021, 16(4): 237-239. DOI: 10.16780/j.cnki.sjssgncj.20191594.
[6]
LUFT A R, SMITH G V, FORRESTER L, et al. Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints[J]. Human Brain Mapping, 2010, 17(2): 131-140. DOI: 10.1002/hbm.10058.
[7]
PIRAMIDE N, AGOSTA F, SARASSO E, et al. Brain activity during lower limb movements in Parkinson's disease patients with and without freezing of gait[J]. J Neurol, 2020, 267(4): 1116-1126. DOI: 10.1007/s00415-019-09687-1.
[8]
SARASSO E, GARDONI A, PIRAMIDE N, et al. Dual-task clinical and functional MRI correlates in Parkinson's disease with postural instability and gait disorders[J]. Parkinsonism Relat Disord, 2021, 91: 88-95. DOI: 10.1016/j.parkreldis.2021.09.003.
[9]
SILVA-BATISTA C, DE LIMA-PARDINI A C, NUCCI M P, et al. A randomized, controlled trial of exercise for Parkinsonian individuals with freezing of gait[J]. Mov Disord, 2020, 35(9): 1607-1617. DOI: 10.1002/mds.28128.
[10]
ZULEGER T M, SLUTSKY-GANESH A B, ANAND M, et al. The effects of sports-related concussion history on female adolescent brain activity and connectivity for bilateral lower extremity knee motor control[J/OL]. Psychophysiology, 2023, 28: e14314 [2023-04-28]. https://onlinelibrary.wiley.com/doi/10.1111/psyp.14314. DOI: 10.1111/psyp.14314.
[11]
VELDKAMP R, GOETSCHALCKX M, HULST H E, et al. Cognitive-motor interference in individuals with a neurologic disorder: A systematic review of neural correlates[J]. Cogn Behav Neurol, 2021, 34(2): 79-95. DOI: 10.1097/WNN.0000000000000269.
[12]
DRUCKER J H, SATHIAN K, CROSSON B, et al. Internally guided lower limb movement recruits compensatory cerebellar activity in people with Parkinson's disease[J/OL]. Front Neurol, 2019, 10: 537 [2023-04-28]. https://www.frontiersin.org/articles/10.3389/fneur.2019.00537/full. DOI: 10.3389/fneur.2019.00537.
[13]
BAGLIO F, PIRASTRU A, BERGSLAND N, et al. Neuroplasticity mediated by motor rehabilitation in Parkinson's disease: a systematic review on structural and functional MRI markers[J]. Rev Neurosci, 2021, 33(2): 213-226. DOI: 10.1515/revneuro-2021-0064.
[14]
LI Y, ZHANG T, LI W, et al. Linking brain structure and activation in anterior insula cortex to explain the trait empathy for pain[J]. Hum Brain Mapp, 2020, 41(4): 1030-1042. DOI: 10.1002/hbm.24858.
[15]
RODRIGUEZ-ROJAS R, PINEDA-PARDO J A, MAÑEZ-MIRO J, et al. Functional topography of the human subthalamic nucleus: Relevance for subthalamotomy in Parkinson's disease[J]. Mov Disord, 2022, 37(2): 279-290. DOI: 10.1002/mds.28862.
[16]
GARDONI A, AGOSTA F, SARASSO E, et al. Cerebellar alterations in Parkinson's disease with postural instability and gait disorders[J]. J Neurol. 2023, 270(3): 1735-1744. DOI: 10.1007/s00415-022-11531-y.
[17]
ZHANG P F, CHENG X, MA L Y, et al. Resting state functional connectivity alterations in motor networks of Parkinson's disease in different frequency bands[J]. Chin J Magn Reson Imaging, 2023, 14(1): 13-19. DOI: 10.12015/issn.1674-8034.2023.01.003.
[18]
ANTONY P M, DIEDERICH N J, KRÜGER R, et al. The hallmarks of Parkinson's disease[J]. FEBS J, 2013, 280(23): 5981-5993. DOI: 10.1111/febs.12335.
[19]
XIONG S Y, WAN N, GUO R, et al. Resting state functional magnetic resonance imaging observation on the characteristics of spontaneous brain activity and functional connectivity in Parkinson's diseases[J]. Chin J Magn Reson Imaging, 2023, 14(1): 25-31. DOI: 10.12015/issn.1674-8034.2023.01.005.
[20]
KÜBEL S, STEGMAYER K, VANBELLINGEN T, et al. Deficient supplementary motor area at rest: Neural basis of limb kinetic deficits in Parkinson's disease[J]. Hum Brain Mapp, 2018, 39(9): 3691-3700. DOI: 10.1002/hbm.24204.
[21]
CERASA A, PUGLIESE P, MESSINA D, et al. Prefrontal alterations in Parkinson's disease with levodopa-induced dyskinesia during fMRI motor task[J]. Mov Disord, 2012, 27(3): 364-371. DOI: 10.1002/mds.24017.
[22]
KÜBEL S, STEGMAYER K, VANBELLINGEN T, et al. Altered praxis network underlying limb kinetic apraxia in Parkinson's disease-an fMRI study[J]. Neuroimage Clin, 2017, 16: 88-97. DOI: 10.1016/j.nicl.2017.07.007.
[23]
GILAT M, DIJKSTRA B W, D'CRUZ N, et al. Functional MRI to study gait impairment in Parkinson's disease: A systematic review and exploratory ALE Meta-analysis[J/OL]. Curr Neurol Neurosci Rep, 2019, 19(8): 49 [2023-04-28]. https://pubmed.ncbi.nlm.nih.gov/31214901/. DOI: 10.1007/s11910-019-0967-2.
[24]
GANDOLA M, ZAPPAROLI L, SAETTA G, et al. Brain abnormalities in individuals with a desire for a healthy limb amputation: somatosensory, motoric or both? A task-based fMRI verdict[J/OL]. Brain Sci, 2021, 11(9): 1248 [2023-04-28]. https://pubmed.ncbi.nlm.nih.gov/34573269/. DOI: 10.3390/brainsci11091248.
[25]
PENG S, CHEN M, LI C M, et al. A resting-state functional MRI study in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2014, 5(5): 321-327. DOI: 10.3969/j.issn.1674-8034.2014.05.001.
[26]
CHUNG J W, BOWER A E, MALIK I, et al. Imaging the lower limb network in Parkinson's disease[J/OL]. Neuroimage Clin, 2023, 38: 103399 [2023-04-28]. https://pubmed.ncbi.nlm.nih.gov/37058977/. DOI: 10.1016/j.nicl.2023.103399.
[27]
BASAIA S, AGOSTA F, FRANCIA A, et al. Cerebro-cerebellar motor networks in clinical subtypes of Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2022, 8(1): 113 [2023-04-28]. https://pubmed.ncbi.nlm.nih.gov/36068246/. DOI: 10.1038/s41531-022-00377-w.
[28]
LANDELLE C, DAHLBERG L S, LUNGU O, et al. Altered spinal cord functional connectivity associated with Parkinson's disease progression[J]. Mov Disord, 2023, 38(4): 636-645. DOI: 10.1002/mds.29354.
[29]
GORDON E M, CHAUVIN R J, VAN A N, et al. A somato-cognitive action network alternates with effector regions in motor cortex[J]. Nature, 2023, 617(7960): 351-359. DOI: 10.1038/s41586-023-05964-2.
[30]
YU H, STERNAD D, CORCOS D M, et al. Role of hyperactive cerebellum and motor cortex in Parkinson's disease[J]. Neuroimage, 2007, 35(1): 222-233. DOI: 10.1016/j.neuroimage.2006.11.047.
[31]
UNDERWOOD C F, PARR-BROWNLIE L C. Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation[J/OL]. Neurobiol Dis, 2021, 147: 105159 [2023-04-28]. https://pubmed.ncbi.nlm.nih.gov/33152506/. DOI: 10.1016/j.nbd.2020.105159.
[32]
PRZEDBORSKI S. The two-century journey of Parkinson disease research[J]. Nat Rev Neurosci, 2017, 18(4): 251-259. DOI: 10.1038/nrn.2017.25.
[33]
LI S, LE W. Milestones of Parkinson's disease research: 200 years of history and beyond[J]. Neurosci Bull, 2017, 33(5): 598-602. DOI: 10.1007/s12264-017-0178-2.
[34]
BRUGGER F, WEGENER R, BATY F, et al. Facilitatory rTMS over the supplementary motor cortex impedes gait performance in Parkinson patients with freezing of gait[J/OL]. Brain Sci, 2021, 11(3): 321 [2023-04-28]. https://pubmed.ncbi.nlm.nih.gov/33802532/. DOI: 10.3390/brainsci11030321.
[35]
JOSHI D, PRASAD S, SAINI J, et al. Role of arterial spin labeling (ASL) images in Parkinson's disease (PD): A systematic review[J]. Acad Radiol, 2023, 30(8): 1695-1708. DOI: 10.1016/j.acra.2022.11.001.

PREV The study of diagnosing the Parkinson,s disease based on substantia nigra radiomics on susceptibility-weighted imaging
NEXT 3D-ASL of arterial transit artifact and the intra-arterial high-intensity signal in the evaluation of short-term clinical outcomes in patients with acute ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn