Share:
Share this content in WeChat
X
Review
Research progress of functional MRI-based neurovascular coupling in central nervous system diseases
RAN Haifeng  ZHANG Tijiang 

Cite this article as: RAN H F, ZHANG T J. Research progress of functional MRI-based neurovascular coupling in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2023, 14(10): 132-136. DOI:10.12015/issn.1674-8034.2023.10.023.


[Abstract] Central nervous system diseases are a class of disorders that often lead to irreversible damage and have poor prognosis. Early intervention can significantly enhance the prognosis for these diseases. Neurovascular coupling (NVC) is a crucial neural mechanism responsible for maintaining normal physiological functions of the human brain. NVC decoupling may be an underlying pathophysiological mechanism in various central nervous system diseases. Functional MRI (fMRI) is a non-invasive imaging technique widely recognized for its effectiveness in studying the functional organization of the human brain. The utilization of fMRI techniques to non-invasively investigate NVC decoupling in diseased states holds significant implications for a better understanding the pathophysiological mechanisms, early diagnosis, and early intervention of central nervous system diseases. This article review the literature of fMRI-based NVC researches within central nervous system diseases, in order to find out the potential neuroimaging biomarkers for such disorders and provide an objective foundation for early disease diagnosis, treatment, and prognosis assessment, thereby offering a novel perspective for future research endeavors in the field of central nervous system diseases.
[Keywords] central nervous system diseases;neurovascular unit;neurovascular coupling;functional magnetic resonance imaging;magnetic resonance imaging

RAN Haifeng   ZHANG Tijiang*  

Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China

Corresponding author: ZHANG T J, E-mail: tijzhang@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82171919, 81960312); Intelligent Medical Imaging Engineering Research Center Project of Higher Education in Guizhou Province (No. Qian Jiao Ji [2023] 038).
Received  2023-04-13
Accepted  2023-09-11
DOI: 10.12015/issn.1674-8034.2023.10.023
Cite this article as: RAN H F, ZHANG T J. Research progress of functional MRI-based neurovascular coupling in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2023, 14(10): 132-136. DOI:10.12015/issn.1674-8034.2023.10.023.

[1]
BONVENTO G, BOLANOS J P. Astrocyte-neuron metabolic cooperation shapes brain activity[J]. Cell Metab, 2021, 33(8): 1546-1564. DOI: 10.1016/j.cmet.2021.07.006.
[2]
KAPLAN L, CHOW B W, GU C. Neuronal regulation of the blood-brain barrier and neurovascular coupling[J]. Nat Rev Neurosci, 2020, 21(8): 416-432. DOI: 10.1038/s41583-020-0322-2.
[3]
IADECOLA C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease[J]. Neuron, 2017, 96(1): 17-42. DOI: 10.1016/j.neuron.2017.07.030.
[4]
SCHAEFFER S, IADECOLA C. Revisiting the neurovascular unit[J]. Nat Neurosci, 2021, 24(9): 1198-209. DOI: 10.1038/s41593-021-00904-7.
[5]
MCCONNELL H L, LI Z, WOLTJER R L, et al. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation?[J]. Neurochem Int, 2019, 128: 70-84. DOI: 10.1016/j.neuint.2019.04.005.
[6]
LONGDEN T A, DABERTRAND F, KOIDE M, et al. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow[J]. Nat Neurosci, 2017, 20(5): 717-726. DOI: 10.1038/nn.4533.
[7]
STACKHOUSE T L, MISHRA A. Neurovascular coupling in development and disease: focus on astrocytes[J/OL]. Front Cell Dev Biol, 2021, 9: 702832 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313501. DOI: 10.3389/fcell.2021.702832.
[8]
CLAASSEN J, THIJSSEN D H J, PANERAI R B, et al. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation[J]. Physiol Rev, 2021, 101(4): 1487-1559. DOI: 10.1152/physrev.00022.2020.
[9]
DREW P J. Neurovascular coupling: motive unknown[J]. Trends Neurosci, 2022, 45(11): 809-819. DOI: 10.1016/j.tins.2022.08.004.
[10]
HOWARTH C, MISHRA A, HALL C N. More than just summed neuronal activity: how multiple cell types shape the BOLD response[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2020, 376(1815): 20190630 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116385. DOI: 10.1098/rstb.2019.0630.
[11]
KIM S G, OGAWA S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals[J]. J Cereb Blood Flow Metab, 2012, 32(7): 1188-1206. DOI: 10.1038/jcbfm.2012.23.
[12]
JIAN Z, WANG X, TIAN M, et al. Review of the research progress of human brain oxygen extraction fraction by magnetic resonance imaging[J/OL]. Oxid Med Cell Longev, 2022, 2022: 4554271 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596244. DOI: 10.1155/2022/4554271.
[13]
HERNANDEZ-GARCIA L, LAHIRI A, SCHOLLENBERGER J. Recent progress in ASL[J]. Neuroimage, 2019, 187: 3-16. DOI: 10.1016/j.neuroimage.2017.12.095.
[14]
ZHOU Q, WANG Q Q, LIU X J. Research progress and clinical application of three-dimensional magnetic resonance arterial spin labeling[J]. Chin J Magn Reson Imaging, 2019, 10(12): 955-960. DOI: 10.12015/issn.1674-8034.2019.12.019.
[15]
LIANG X, ZOU Q, HE Y, et al. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain[J]. Proc Natl Acad Sci U S A, 2013, 110(5): 1929-1934. DOI: 10.1073/pnas.1214900110.
[16]
CARNERO CONTENTTI E, CORREALE J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies[J/OL]. J Neuroinflammation, 2021, 18(1): 208 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444436. DOI: 10.1186/s12974-021-02249-1.
[17]
SHI M, CHU F, JIN T, et al. Progress in treatment of neuromyelitis optica spectrum disorders (NMOSD): Novel insights into therapeutic possibilities in NMOSD[J]. CNS Neurosci Ther, 2022, 28(7): 981-991. DOI: 10.1111/cns.13836.
[18]
SAVOLDI F, ROCCA M A, VALSASINA P, et al. Functional brain connectivity abnormalities and cognitive deficits in neuromyelitis optica spectrum disorder[J]. Mult Scler, 2020, 26(7): 795-805. DOI: 10.1177/1352458519845109.
[19]
ZHANG X, GUO X, ZHANG N, et al. Cerebral Blood Flow Changes in Multiple Sclerosis and Neuromyelitis Optica and Their Correlations With Clinical Disability[J/OL]. Front Neurol, 2018, 9: 305 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946009. DOI: 10.3389/fneur.2018.00305.
[20]
GUO X, ZHU J, ZHANG N, et al. Altered neurovascular coupling in neuromyelitis optica[J]. Hum Brain Mapp, 2019, 40(3): 976-986. DOI: 10.1002/hbm.24426.
[21]
MCGREGOR M M, NELSON A B. Circuit mechanisms of Parkinson's disease[J]. Neuron, 2019, 101(6): 1042-1056. DOI: 10.1016/j.neuron.2019.03.004.
[22]
WEINTRAUB D, AARSLAND D, BIUNDO R, et al. Management of psychiatric and cognitive complications in Parkinson's disease[J/OL]. BMJ, 2022, 379: e068718 [2023-04-12]. https://doi.org/10.1136/bmj-2021-068718. DOI: 10.1136/bmj-2021-068718.
[23]
CERRI S, MUS L, BLANDINI F. Parkinson's disease in women and men: What's the difference?[J]. J Parkinson's Dis, 2019, 9(3): 501-515. DOI: 10.3233/jpd-191683.
[24]
SIMON D K, TANNER C M, BRUNDIN P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology[J]. Clin Geriatr Med, 2020, 36(1): 1-12. DOI: 10.1016/j.cger.2019.08.002.
[25]
ARSLAND D, BATZU L, HALLIDAY GM, et al. Parkinson disease-associated cognitive impairment[J/OL]. Nature Reviews Disease Primers, 2021, 7(1): 47 [2023-04-13]. https://www.nature.com/articles/s41572-021-00280-3. DOI: 10.1038/s41572-021-00280-3.
[26]
ZAMAN V, SHIELDS D C, SHAMS R, et al. Cellular and molecular pathophysiology in the progression of Parkinson's disease[J]. Metab Brain Dis, 2021, 36(5): 815-827. DOI: 10.1007/s11011-021-00689-5.
[27]
MONTI G, GOMES MOREIRA D, RICHNER M, et al. GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight[J/OL]. Cells, 2022, 11(13): 2023 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265397. DOI: 10.3390/cells11132023.
[28]
SOLSTRAND DAHLBERG L, LUNGU O, DOYON J. Cerebellar Contribution to Motor and Non-motor Functions in Parkinson's Disease: A Meta-Analysis of fMRI Findings s[J/OL]. Front Neurol, 2020, 11: 127 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056869. DOI: 10.3389/fneur.2020.00127.
[29]
RANE S, KOH N, OAKLEY J, et al. Arterial spin labeling detects perfusion patterns related to motor symptoms in Parkinson's disease[J]. Parkinsonism Relat D, 2020, 76: 21-28. DOI: 10.1016/j.parkreldis.2020.05.014.
[30]
SHANG S, ZHANG H, FENG Y, et al. Region-specific neurovascular decoupling associated with cognitive decline in Parkinson's disease[J/OL]. Front Aging Neurosci, 2021, 13: 770528 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636132. DOI: 10.3389/fnagi.2021.770528.
[31]
SHANG S, YE J, WU J, et al. Early disturbance of dynamic synchronization and neurovascular coupling in cognitively normal Parkinson's disease[J]. J Cereb Blood Flow Metab, 2022, 42(9): 1719-1731. DOI: 10.1177/0271678X221098503.
[32]
LI T, WANG L, PIAO Z, et al. Altered neurovascular coupling for multidisciplinary intensive rehabilitation in Parkinson's disease[J]. J Neurosci, 2023, 43(7): 1256-1266. DOI: 10.1523/JNEUROSCI.1204-22.2023.
[33]
SI Z Z, ZOU C J, MEI X, et al. Targeting neuroinflammation in Alzheimer's disease: from mechanisms to clinical applications[J]. Neural Regen Res, 2023, 18(4): 708-715. DOI: 10.4103/1673-5374.353484.
[34]
JI Y P, LI X S, LI X Y, et al. Role of neurovascular dysfunction in vascular cognitive impairment and Alzheimer's disease[J]. International Journal of Cerebrovascular Diseases, 2019, 27(11): 860-864. DOI: 10.3760/cma.j.issn.1673-4165.2019.11.011.
[35]
WANG N, BAI L J, JIANG X, et al. Blood-brain barrier and Alzheimer's disease and vascular cognitive impairment[J]. International Journal of Cerebrovascular Diseases, 2020, 28(6): 468-471. DOI: 10.3760/cma.j.issn.1673-4165.2020.06.012.
[36]
JIN D, WANG P, ZALESKY A, et al. Grab-AD: Generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer's Disease[J]. Hum Brain Mapp, 2020, 41(12): 3379-3391. DOI: 10.1002/hbm.25023.
[37]
IBRAHIM B, SUPPIAH S, IBRAHIM N, et al. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review[J]. Hum Brain Mapp, 2021, 42(9): 2941-2968. DOI: 10.1002/hbm.25369.
[38]
CHANDRA A, DERVENOULAS G, POLITIS M. Magnetic resonance imaging in Alzheimer's disease and mild cognitive impairment[J]. J Neurol, 2019, 266(6): 1293-1302. DOI: 10.1007/s00415-018-9016-3.
[39]
LI J, ZENG Q, LUO X, et al. Decoupling of regional cerebral blood flow and brain function along the Alzheimer's continuum[J]. J Alzheimers Dis, 2023, 95(1): 287-298. DOI: 10.3233/jad-230503.
[40]
DEVINSKY O, VEZZANI A, O'BRIEN T J, et al. Epilepsy[J]. Nat Rev Dis Primers, 2018, 4: 18024. DOI: 10.1038/nrdp.2018.24.
[41]
THIJS R D, SURGES R, O'BRIEN T J, et al. Epilepsy in adults[J]. Lancet (London, England), 2019, 393(10172): 689-701. DOI: 10.1016/s0140-6736(18)32596-0.
[42]
PRAGER O, KAMINTSKY L, HASAM-HENDERSON L A, et al. Seizure-induced microvascular injury is associated with impaired neurovascular coupling and blood-brain barrier dysfunction[J]. Epilepsia, 2019, 60(2): 322-336. DOI: 10.1111/epi.14631.
[43]
Baruah J, Vasudevan A, Kohling R. Vascular Integrity and signaling determining brain development, network excitability, and epileptogenesis[J/OL]. Front Physiol, 2019, 10: 1583 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987412. DOI: 10.3389/fphys.2019.01583.
[44]
MARCHI N, LERNER-NATOLI M. Cerebrovascular remodeling and epilepsy[J]. Neuroscientist, 2013, 19(3): 304-312. DOI: 10.1177/1073858412462747.
[45]
LOSCHER W, POTSCHKA H, SISODIYA S M, et al. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options[J]. Pharmacol Rev, 2020, 72(3): 606-638. DOI: 10.1124/pr.120.019539.
[46]
GAXIOLA-VALDEZ I, SINGH S, PERERA T, et al. Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI[J]. Brain, 2017, 140(11): 2895-2911. DOI: 10.1093/brain/awx241.
[47]
PANG L, FAN B, CHEN Z, et al. Disruption of cerebellar-cerebral functional connectivity in temporal lobe epilepsy and the connection to language and cognitive functions[J/OL]. Front Neurosci, 2022, 16: 871128 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273908. DOI: 10.3389/fnins.2022.871128.
[48]
HU J, RAN H, CHEN G, et al. Altered neurovascular coupling in children with idiopathic generalized epilepsy[J]. CNS Neurosci Ther, 2023, 29(2): 609-618. DOI: 10.1111/cns.14039.

PREV MRI research progress on the neuromodulation mechanism of non-invasive neuromodulation for Parkinson,s disease
NEXT Research progress of MRI on the relationship between blood glucose fluctuations and cognitive dysfunction in type 2 diabetes
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn