Share:
Share this content in WeChat
X
Review
Progresseson MRI characteristics of the effect of cerebral small vessel disease on cognitive function in patients with type 2 diabetes mellitus
LIU Yangyingqiu  MIAO Yanwei 

Cite this article as: LIU Y Y Q, MIAO Y W. Progresseson MRI characteristics of the effect of cerebral small vessel disease on cognitive function in patients with type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2023, 14(10): 141-146. DOI:10.12015/issn.1674-8034.2023.10.025.


[Abstract] Cognitive impairment is a main symptom of brain damage in type 2 diabetes mellitus (T2DM) patients.The cognitive function decline of T2DM patients may be mediated by microvascular injury which caused by chronic hyperglycemia.We reviewed the anatomy, pathology and MRI features of cerebral small vascular disease (CSVD)(recent small subcortical infarct, lacune, white matter hyperintensity, perivascular space, cerebral microbleed, cortical superficial siderosis, cortical microinfarct, atrophy), the CSVD factors of cognitive decline in T2DM patients, and the progress of radiomics research of CSVD MRI features in this paper, in order to provide ideas for further research and clinical diagnosis and treatment.
[Keywords] type 2 diabetes mellitus;cerebral small vessel disease;cognitive impairment;white matter hyperintensity;radiomics;diffusion tensor imaging;susceptibility weighted imaging;magnetic resonance imaging

LIU Yangyingqiu1, 2   MIAO Yanwei1*  

1 Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China

2 Department of Radiology, Zibo Central Hospital, Zibo 255000, China

Corresponding author: MIAO Y W, E-mail: ywmiao716@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81671646).
Received  2023-05-09
Accepted  2023-09-14
DOI: 10.12015/issn.1674-8034.2023.10.025
Cite this article as: LIU Y Y Q, MIAO Y W. Progresseson MRI characteristics of the effect of cerebral small vessel disease on cognitive function in patients with type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2023, 14(10): 141-146. DOI:10.12015/issn.1674-8034.2023.10.025.

[1]
Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)[J]. Chin J Diabetes Mellitus, 2021, 13(4): 315-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.
[2]
SAMARAS K, MAKKAR S, CRAWFORD JD, et al. Metformin Use Is Associated With Slowed Cognitive Decline and Reduced Incident Dementia in Older Adults With Type 2 Diabetes: The Sydney Memory and Ageing Study[J]. Diabetes Care, 2020, 43(11): 2691-2701. DOI: 10.2337/dc20-0892.
[3]
CHORNENKYY Y, WANG W X, WEI A, et al. Alzheimer's disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline[J]. Brain Pathol, 2019, 29(1): 3-17. DOI: 10.1111/bpa.12655.
[4]
WERHANE M L, THOMAS K R, BANGEN K J, et al. Arterial stiffening moderates the relationship between type-2 diabetes mellitus and white matter hyperintensity burden in older adults with mild cognitive impairment[J/OL]. Front Aging Neurosci, 2021, 13: 716638 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/34759811/ DOI: 10.3389/fnagi.2021.716638.
[5]
KERNAN W N, FORMAN R, INZUCCHI S E. Caring for patients with diabetes in stroke neurology[J]. Stroke, 2023, 54(3): 894-904. DOI: 10.1161/STROKEAHA.122.038163.
[6]
VAN SLOTEN T T, SEDAGHAT S, CARNETHON M R, et al. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression[J]. Lancet Diabetes Endocrinol, 2020, 8(4): 325-336. DOI: 10.1016/S2213-8587(19)30405-X.
[7]
ZHANG M M, HUANG P Y. Application of magnetic resonance imaging in the early diagnosis of senile brain diseases[J]. Int J Med Radiol, 2021, 44(4): 373-377. DOI: 10.19300/j.2021.S19164.
[8]
CANNISTRARO R J, BADI M, EIDELMAN B H, et al. CNS small vessel disease: a clinical review[J]. Neurology, 2019, 92(24): 1146-1156. DOI: 10.1212/WNL.0000000000007654.
[9]
FISHER C M. Lacunar strokes and infarcts: a review[J/OL]. Neurology, 1982, 32(8): 871 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/7048128/. DOI: 10.1212/wnl.32.8.871.
[10]
DUERING M, BIESSELS G J, BRODTMANN A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. DOI: 10.1016/S1474-4422(23)00131-X.
[11]
FANG F, CAO R, LUO Q, et al. The silent occurrence of cerebral small vessel disease in nonelderly patients with type 2 diabetes mellitus[J]. J Diabetes, 2021, 13(9): 735-743. DOI: 10.1111/1753-0407.13164.
[12]
SHAO J W, WANG J D, HE Q, et al. Three-dimensional-arterial spin labeling perfusion correlation with diabetes-associated cognitive dysfunction and vascular endothelial growth factor in type 2 diabetes mellitus rat[J]. World J Diabetes, 2021, 12(4): 499-513. DOI: 10.4239/wjd.v12.i4.499.
[13]
STEHOUWER C D A. Microvascular dysfunction and hyperglycemia: a vicious cycle with widespread consequences[J]. Diabetes, 2018, 67(9): 1729-1741. DOI: 10.2337/dbi17-0044.
[14]
TELGTE A TER, VAN LEIJSEN E M C, WIEGERTJES K, et al. Cerebral small vessel disease: from a focal to a global perspective[J]. Nat Rev Neurol, 2018, 14(7): 387-398. DOI: 10.1038/s41582-018-0014-y.
[15]
WANG M M, ZHANG S S, LIU H, et al. Analysis of related factors affecting evolution of recent small subcortical infarcts with cerebral small vessel disease[J]. Natl Med J China, 2019, 99(43): 3420-3423. DOI: 10.3760/cma.j.issn.0376-2491.2019.43.014.
[16]
KWON H S, CHO A H, LEE M H, et al. Evolution of acute lacunar lesions in terms of size and shape: a PICASSO sub-study[J]. J Neurol, 2019, 266(3): 766-772. DOI: 10.1007/s00415-019-09201-7.
[17]
TELGTE A TER, WIEGERTJES K, GESIERICH B, et al. Temporal dynamics of cortical microinfarcts in cerebral small vessel disease[J]. JAMA Neurol, 2020, 77(5): 643-647. DOI: 10.1001/jamaneurol.2019.5106.
[18]
VAN VELUW S J, SHIH A Y, SMITH E E, et al. Detection, risk factors, and functional consequences of cerebral microinfarcts[J]. Lancet Neurol, 2017, 16(9): 730-740. DOI: 10.1016/S1474-4422(17)30196-5.
[19]
WANG D Q, WANG L, XIA X S, et al. Clinical and MRI features about two types of silent cerebral small-vessel disease in type-2 diabetes mellitus: a retrospective cross-sectional study in a tertiary hospital[J]. Quant Imaging Med Surg, 2022, 12(4): 2385-2396. DOI: 10.21037/qims-21-786.
[20]
VAN DEN BRINK H, DOUBAL F N, DUERING M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke, 2023, 18(1): 28-35. DOI: 10.1177/17474930221091879.
[21]
MENG Q Z, WANG Y, LI B, et al. Relationship between glycemic variability and cognitive function in lacune patients with type 2 diabetes[J]. World J Clin Cases, 2023, 11(5): 1019-1030. DOI: 10.12998/wjcc.v11.i5.1019.
[22]
HU W L, YANG L, LI X T, et al. Chinese consensus on diagnosis and therapy of cerebral small vessel disease 2021[J]. Chin J Stroke, 2021, 16(7): 716-726. DOI: 10.3969/j.issn.1673-5765.2021.07.013.
[23]
GUPTA N, SIMPKINS A N, HITOMI E, et al. White matter hyperintensity-associated blood-brain barrier disruption and vascular risk factors[J]. J Stroke Cerebrovasc Dis, 2018, 27(2): 466-471. DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.026.
[24]
MARSEGLIA A, FRATIGLIONI L, KALPOUZOS G, et al. Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: a population-based cohort study[J]. Alzheimers Dement, 2019, 15(1): 25-33. DOI: 10.1016/j.jalz.2018.06.3060.
[25]
LIU J F, RUTTEN-JACOBS L, LIU M, et al. Causal impact of type 2 diabetes mellitus on cerebral small vessel disease: a Mendelian randomization analysis[J]. Stroke, 2018, 49(6): 1325-1331. DOI: 10.1161/STROKEAHA.117.020536.
[26]
ESPELAND M A, HAYDEN K M, LOCKHART S N, et al. Sex-related differences in brain volumes and cerebral blood flow among overweight and obese adults with type 2 diabetes: exploratory analyses from the action for health in diabetes brain magnetic resonance imaging study[J]. J Gerontol A Biol Sci Med Sci, 2020, 75(4): 771-778. DOI: 10.1093/gerona/glz090.
[27]
FUNCK K L, LAUGESEN E, HØYEM P, et al. Arterial stiffness and progression of cerebral white matter hyperintensities in patients with type 2 diabetes and matched controls: a 5-year cohort study[J/OL]. Diabetol Metab Syndr, 2021, 13(1): 71 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/34174943/. DOI: 10.1186/s13098-021-00691-y.
[28]
BRESSER J D, KUIJF H J, ZAANEN K, et al. White matter hyperintensity shape and location feature analysis on brain MRI; proof of principle study in patients with diabetes[J/OL]. Sci Rep, 2018, 8(1): 1893 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/29382936/. DOI: 10.1038/s41598-018-20084-y.
[29]
WANG D Q, WANG L, WEI M M, et al. Relationship between type 2 diabetes and white matter hyperintensity: a systematic review[J/OL]. Front Endocrinol, 2020, 11: 595962 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/33408693/. DOI: 10.3389/fendo.2020.595962.
[30]
MANKOVSKY B, ZHERDOVA N, VAN DEN BERG E, et al. Cognitive functioning and structural brain abnormalities in people with Type 2 diabetes mellitus[J]. Diabet Med, 2018, 35(12): 1663-1670. DOI: 10.1111/dme.13800.
[31]
VERGOOSSEN L W M, JANSEN J F A, VAN SLOTEN T T, et al. Interplay of white matter hyperintensities, cerebral networks, and cognitive function in an adult population: diffusion-tensor imaging in the maastricht study[J]. Radiology, 2021, 298(2): 384-392. DOI: 10.1148/radiol.2021202634.
[32]
HAMILTON O K L, COX S R, OKELY J A, et al. Cerebral small vessel disease burden and longitudinal cognitive decline from age 73 to 82: the Lothian Birth Cohort 1936[J/OL]. Transl Psychiatry, 2021, 11(1): 376 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/34226517/. DOI: 10.1038/s41398-021-01495-4.
[33]
HAMILTON O K L, BACKHOUSE E V, JANSSEN E, et al. Cognitive impairment in sporadic cerebral small vessel disease: a systematic review and meta-analysis[J]. Alzheimers Dement, 2021, 17(4): 665-685. DOI: 10.1002/alz.12221.
[34]
XIONG Y, SUI Y, ZHANG S, et al. Brain microstructural alterations in type 2 diabetes: diffusion kurtosis imaging provides added value to diffusion tensor imaging[J]. Eur Radiol, 2019, 29(4): 1997-2008. DOI: 10.1007/s00330-018-5746-y.
[35]
CUI Y, TANG T Y, LU C Q, et al. Disturbed interhemispheric functional and structural connectivity in type 2 diabetes[J]. J Magn Reson Imaging, 2022, 55(2): 424-434. DOI: 10.1002/jmri.27813.
[36]
HUANG L, ZHANG Q Q, TANG T, et al. Abnormalities of brain white matter in type 2 diabetes mellitus: a meta-analysis of diffusion tensor imaging[J/OL]. Front Aging Neurosci, 2021, 13: 693890 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/34421572/. DOI: 10.3389/fnagi.2021.693890.
[37]
ROY B, CHOI S E, FREEBY M J, et al. Microstructural brain tissue changes contribute to cognitive and mood deficits in adults with type 2 diabetes mellitus[J/OL]. Sci Rep, 2023, 13(1): 9636 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/37316507/. DOI: 10.1038/s41598-023-35522-9.
[38]
CHEN Z Z. Correlation between enlarged perivascular space and type 2 diabetes mellitus[D].Wenzhou: Wenzhou Medical University, 2017.
[39]
BARNES A, BALLERINI L, VALDÉS HERNÁNDEZ M D C, et al. Topological relationships between perivascular spaces and progression of white matter hyperintensities: a pilot study in a sample of the Lothian Birth Cohort 1936[J/OL]. Front Neurol, 2022, 13: 889884 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/36090857/. DOI: 10.3389/fneur.2022.889884.
[40]
CHOI E Y, PARK Y W, LEE M, et al. Magnetic resonance imaging-visible perivascular spaces in the basal Ganglia are associated with the diabetic retinopathy stage and cognitive decline in patients with type 2 diabetes[J/OL]. Front Aging Neurosci, 2021, 13: 666495 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/34867262/. DOI: 10.3389/fnagi.2021.666495.
[41]
JOLINK W M T, van VELUW S J, ZWANENBURG J J M, et al. Histopathology of Cerebral Microinfarcts and Microbleeds in Spontaneous Intracerebral Hemorrhage[J]. Transl Stroke Res, 2023, 14(2): 174-184. DOI: 10.1007/s12975-022-01016-5.
[42]
LAWRENCE A J, BROOKES R L, ZEESTRATEN E A, et al. Pattern and rate of cognitive decline in cerebral small vessel disease: a prospective study[J/OL]. PLoS One, 2015, 10(8): e0135523 [2023-05-08]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135523. DOI: 10.1371/journal.pone.0135523.
[43]
LI M, LI G Z, ZHONG D. Progress in research on cortical superficial siderosis[J]. Chin J Stroke, 2020, 15(3): 320-325. DOI: 10.3969/j.issn.1673-5765.2020.03.018.
[44]
FANG F, ZHAN Y F, ZHUO Y Y, et al. Brain atrophy in middle-aged subjects with Type 2 diabetes mellitus, with and without microvascular complications[J]. J Diabetes, 2018, 10(8): 625-632. DOI: 10.1111/1753-0407.12646.
[45]
WANG W W. Series clinical study of cerebral structural and functional impairment in type 2 diabetes mellitus by multimodal Fmri[D]. Tianjing: Tianjing Medical University, 2020.
[46]
ESPELAND M A, BRYAN R N, GOVEAS J S, et al. Influence of type 2 diabetes on brain volumes and changes in brain volumes: results from the Women's Health Initiative Magnetic Resonance Imaging studies[J]. Diabetes Care, 2013, 36(1): 90-97. DOI: 10.2337/dc12-0555.
[47]
MILNE N T, BUCKS R S, DAVIS W A, et al. Hippocampal atrophy, asymmetry, and cognition in type 2 diabetes mellitus[J/OL]. Brain Behav, 2018, 8(1): e00741 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/29568674/. DOI: 10.1002/brb3.741.
[48]
STAALS J, MAKIN S D, DOUBAL F N, et al. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden[J]. Neurology, 2014, 83(14): 1228-1234. DOI: 10.1212/WNL.0000000000000837.
[49]
TENG Z J, FENG J, LIU R, et al. Cerebral small vessel disease is associated with mild cognitive impairment in type 2 diabetes mellitus[J/OL]. Diabetes Metab Syndr Obes, 2022, 15: 1985-1994 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/35814027/. DOI: 10.2147/DMSO.S368725.
[50]
TOZER D J, ZEESTRATEN E, LAWRENCE A J, et al. Texture analysis of T1-weighted and fluid-attenuated inversion recovery images detects abnormalities that correlate with cognitive decline in small vessel disease[J]. Stroke, 2018, 49(7): 1656-1661. DOI: 10.1161/STROKEAHA.117.019970.
[51]
SHU Z Y, SHAO Y, XU Y Y, et al. Radiomics nomogram based on MRI for predicting white matter hyperintensity progression in elderly adults[J]. J Magn Reson Imaging, 2020, 51(2): 535-546. DOI: 10.1002/jmri.26813.
[52]
SHAO Y, CHEN Z H, MING S, et al. Predicting the development of normal-appearing white matter with radiomics in the aging brain: a longitudinal clinical study[J/OL]. Front Aging Neurosci, 2018, 10: 393 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/30546304/. DOI: 10.3389/fnagi.2018.00393.
[53]
FENG F, WANG P, ZHAO K, et al. Radiomic features of hippocampal subregions in Alzheimer's disease and amnestic mild cognitive impairment[J/OL]. Front Aging Neurosci, 2018, 10: 290 [2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/30319396/. DOI: 10.3389/fnagi.2018.00290.

PREV Research progress of MRI on the relationship between blood glucose fluctuations and cognitive dysfunction in type 2 diabetes
NEXT Study on the application of quantitative susceptibility mapping in cognitive function assessment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn