Share:
Share this content in WeChat
X
Review
Study on the application of quantitative susceptibility mapping in cognitive function assessment
LI Yingna  LIANG Wenzhou  ZHAO Liying  WANG Zhiren 

Cite this article as: LI Y N, LIANG W Z, ZHAO L Y, et al. Study on the application of quantitative susceptibility mapping in cognitive function assessment[J]. Chin J Magn Reson Imaging, 2023, 14(10): 147-151. DOI:10.12015/issn.1674-8034.2023.10.026.


[Abstract] As the elderly population continues to grow, issues related to cognitive impairment have become increasingly prominent. Effective methods for assessing cognitive function are crucial for the health of older individuals. This review delved into a potential non-invasive imaging technique known as quantitative susceptibility mapping (QSM) and its applications in the field of neurodegenerative diseases and cognitive impairment. We summarized the use of QSM technology in conditions such as Alzheimer's disease and Parkinson's disease, emphasizing its potential in assessing the relationship between brain iron content and cognitive decline. Additionally, we highlighted the potential applications of QSM in conditions like post-stroke cognitive impairment, diabetes, anemia, and others. Through an in-depth exploration of QSM technology, this review aims to provide new avenues for early diagnosis, treatment, and understanding of neurodegenerative diseases and cognitive impairment.
[Keywords] quantitative susceptibility mapping;cognitive impairment;iron deposition;Alzheimer's disease;mild cognitive impairment;Parkinson's disease;neurodegenerative disorders;magnetic resonance imaging

LI Yingna1   LIANG Wenzhou1   ZHAO Liying1   WANG Zhiren2*  

1 Department of Radiology, Beijing Huilongguan Hospital, Beijing 100096, China

2 Department of Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China

Corresponding author: WANG Z R, E-mail: zhiren75@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Capital's Funds for Health Improvement and Research (No. CFH2022-2-2133); Beijing Municipal Administration of Hospital's Development of Clinical Medicine (No. XMLX202130).
Received  2023-04-14
Accepted  2023-09-21
DOI: 10.12015/issn.1674-8034.2023.10.026
Cite this article as: LI Y N, LIANG W Z, ZHAO L Y, et al. Study on the application of quantitative susceptibility mapping in cognitive function assessment[J]. Chin J Magn Reson Imaging, 2023, 14(10): 147-151. DOI:10.12015/issn.1674-8034.2023.10.026.

[1]
LIU C L, LI W, TONG K A, et al. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain[J]. J Magn Reson Imaging, 2015, 42(1): 23-41. DOI: 10.1002/jmri.24768.
[2]
LI W, WU B, LIU C L. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition[J]. NeuroImage, 2011, 55(4): 1645-1656. DOI: 10.1016/j.neuroimage.2010.11.088.
[3]
LANGKAMMER C, SCHWESER F, KREBS N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study[J]. Neuroimage, 2012, 62(3): 1593-1599. DOI: 10.1016/j.neuroimage.2012.05.049.
[4]
HAACKE E M, CHENG N Y C, HOUSE M J, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging, 2005, 23(1): 1-25. DOI: 10.1016/j.mri.2004.10.001.
[5]
ZHAO Y, QU H, WANG W, et al. Assessing mild cognitive impairment in Parkinson's disease by magnetic resonance quantitative susceptibility mapping combined voxel-wise and radiomic analysis[J]. Eur Neurol, 2022, 85(4): 280-290. DOI: 10.1159/000522329.
[6]
HU R, GAO B B, TIAN S Y, et al. Regional high iron deposition on quantitative susceptibility mapping correlates with cognitive decline in type 2 diabetes mellitus[J/OL]. Front Neurosci, 2023, 17: 1061156 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/36793541/. DOI: 10.3389/fnins.2023.1061156.
[7]
COFFMAN C H, WHITE R, SUBRAMANIAN K, et al. Quantitative susceptibility mapping of both ring and non-ring white matter lesions in relapsing remitting multiple sclerosis[J/OL]. Magn Reson Imaging, 2022, 91: 45-51 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/35605736/. DOI: 10.1016/j.mri.2022.05.009.
[8]
YE J Y. The research of iron deposition in brain and its correlation with cognitive impairment in patients with idiopathic rapid eye movement sleep behavior disorder based on quantitative susceptibility mapping[D]. Tianjin: Tianjin Medical University, 2019. DOI: 10.27366/d.cnki.gtyku.2019.001029.
[9]
LI W, WU B, BATRACHENKO A, et al. Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan[J]. Hum Brain Mapp, 2014, 35(6): 2698-2713. DOI: 10.1002/hbm.22360.
[10]
UCHIDA Y, KAN H, SAKURAI K, et al. Quantitative susceptibility mapping as an imaging biomarker for Alzheimer's disease: the expectations and limitations[J/OL]. Front Neurosci, 2022, 16: 938092 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/35992906/. DOI: 10.3389/fnins.2022.938092.
[11]
YANG A C, DU L, GAO W W, et al. Associations of cortical iron accumulation with cognition and cerebral atrophy in Alzheimer's disease[J]. Quant Imaging Med Surg, 2022, 12(9): 4570-4586. DOI: 10.21037/qims-22-7.
[12]
KUCHCINSKI G, PATIN L, LOPES R, et al. Quantitative susceptibility mapping demonstrates different patterns of iron overload in subtypes of early-onset Alzheimer's disease[J]. Eur Radiol, 2023, 33(1): 184-195. DOI: 10.1007/s00330-022-09014-9.
[13]
COGSWELL P M, WISTE H J, SENJEM M L, et al. Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers[J/OL]. NeuroImage, 2021, 224: 117433 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/33035667/. DOI: 10.1016/j.neuroimage.2020.117433.
[14]
DU L, ZHAO Z F, CUI A L, et al. Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer's disease[J]. ACS Chem Neurosci, 2018, 9(7): 1849-1857. DOI: 10.1021/acschemneuro.8b00194.
[15]
GUAN X J, GUO T, ZHOU C, et al. Altered brain iron depositions from aging to Parkinson's disease and Alzheimer's disease: a quantitative susceptibility mapping study[J/OL]. NeuroImage, 2022, 264: 119683 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/36243270/. DOI: 10.1016/j.neuroimage.2022.119683.
[16]
QIN Z J, WU W J, LIU D X, et al. Quantitative susceptibility mapping of brain iron relating to cognitive impairment in hypertension[J]. J Magn Reson Imaging, 2022, 56(2): 508-515. DOI: 10.1002/jmri.28043.
[17]
ZHANG Z Y, JIANG H R, SUN X R, et al. Monitoring mild cognitive impairment of workers exposed to occupational aluminium based on quantitative susceptibility mapping[J]. Clin Radiol, 2022, 77(11): 840-847. DOI: 10.1016/j.crad.2022.06.007.
[18]
NI M H, LI Z Y, SUN Q, et al. Neurovascular decoupling measured with quantitative susceptibility mapping is associated with cognitive decline in patients with type 2 diabetes[J]. Cereb Cortex, 2023, 33(9): 5336-5346. DOI: 10.1093/cercor/bhac422.
[19]
LI D X, LIU Y C, ZENG X C, et al. Quantitative study of the changes in cerebral blood flow and iron deposition during progression of Alzheimer's disease[J]. J Alzheimers Dis, 2020, 78(1): 439-452. DOI: 10.3233/JAD-200843.
[20]
KAN H, UCHIDA Y, UEKI Y, et al. R2* relaxometry analysis for mapping of white matter alteration in Parkinson's disease with mild cognitive impairment[J/OL]. Neuroimage Clin, 2022, 33: 102938 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/34998126/. DOI: 10.1016/j.nicl.2022.102938.
[21]
YU J J, LI C, QIAN Z M, et al. Brain iron deposition is positively correlated with cognitive impairment in patients with chronic cerebral hypoperfusion: a MRI susceptibility mapping study[J]. Clin Radiol, 2023, 78(8): 601-607. DOI: 10.1016/j.crad.2023.02.020.
[22]
HUANG C B, LI J, LIU C, et al. Investigation of brain iron levels in Chinese patients with Alzheimer's disease[J/OL]. Front Aging Neurosci, 2023, 15: 1168845 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/37284016/. DOI: 10.3389/fnagi.2023.1168845.
[23]
KIM H G, PARK S, RHEE H Y, et al. Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease[J/OL]. Neuroimage Clin, 2017, 16: 429-438 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/28879084/. DOI: 10.1016/j.nicl.2017.08.019.
[24]
CHEN M X, WANG Y T, ZHANG C Y, et al. Free water and iron content in the substantia nigra at different stages of Parkinson's disease[J/OL]. Eur J Radiol, 2023, 167: 111030 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/37579561/. DOI: 10.1016/j.ejrad.2023.111030.
[25]
HE N Y, LING H W, DING B, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping[J]. Hum Brain Mapp, 2015, 36(11): 4407-4420. DOI: 10.1002/hbm.22928.
[26]
LANGKAMMER C, PIRPAMER L, SEILER S, et al. Quantitative susceptibility mapping in Parkinson's disease[J/OL]. PLoS One, 2016, 11(9): e0162460 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/27598250/. DOI: 10.1371/journal.pone.0162460.
[27]
THOMAS G E C, LEYLAND L A, SCHRAG A E, et al. Brain iron deposition is linked with cognitive severity in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2020, 91(4): 418-425. DOI: 10.1136/jnnp-2019-322042.
[28]
KANG J J, CHEN Y, XU G D, et al. Combining quantitative susceptibility mapping to radiomics in diagnosing Parkinson's disease and assessing cognitive impairment[J]. Eur Radiol, 2022, 32(10): 6992-7003. DOI: 10.1007/s00330-022-08790-8.
[29]
PYATIGORSKAYA N, SANZ-MORÈRE C B, GAURAV R, et al. Iron imaging as a diagnostic tool for Parkinson's disease: a systematic review and meta-analysis[J/OL]. Front Neurol, 2020, 11: 366 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/32547468/. DOI: 10.3389/fneur.2020.00366.
[30]
MAZZUCCHI S, DEL PRETE E, COSTAGLI M, et al. Morphometric imaging and quantitative susceptibility mapping as complementary tools in the diagnosis of parkinsonisms[J]. Eur J Neurol, 2022, 29(10): 2944-2955. DOI: 10.1111/ene.15447.
[31]
SCHAEFFER M J, CHAN L, BARBER P A. The neuroimaging of neurodegenerative and vascular disease in the secondary prevention of cognitive decline[J]. Neural Regen Res, 2021, 16(8): 1490-1499. DOI: 10.4103/1673-5374.303011.
[32]
YANG Q F, ZHOU L N, LIU C, et al. Brain iron deposition in type 2 diabetes mellitus with and without mild cognitive impairment-an in vivo susceptibility mapping study[J]. Brain Imaging Behav, 2018, 12(5): 1479-1487. DOI: 10.1007/s11682-017-9815-7.
[33]
LIU T, ESKREIS-WINKLER S, SCHWEITZER A D, et al. Improved subthalamic nucleus depiction with quantitative susceptibility mapping[J]. Radiology, 2013, 269(1): 216-223. DOI: 10.1148/radiol.13121991.
[34]
PEROSA V, ROTTA J, YAKUPOV R, et al. Implications of quantitative susceptibility mapping at 7 Tesla MRI for microbleeds detection in cerebral small vessel disease[J/OL]. Front Neurol, 2023, 14: 1112312 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/37006483/. DOI: 10.3389/fneur.2023.1112312.
[35]
BAE H, CHO Y W, KIM K T, et al. Ferric carboxymaltose effects on restless legs syndrome and on brain iron in patients with iron deficiency anemia[J/OL]. Sleep Med, 2023, 109: 128-131 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/37437492/. DOI: 10.1016/j.sleep.2023.06.023.
[36]
SUN Y W, CAO W W, DING W N, et al. Cerebral blood flow alterations as assessed by 3D ASL in cognitive impairment in patients with subcortical vascular cognitive impairment: a marker for disease severity[J/OL]. Front Aging Neurosci, 2016, 8: 211 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/27630562/. DOI: 10.3389/fnagi.2016.00211.
[37]
MOON Y, HAN S H, MOON W J. Patterns of brain iron accumulation in vascular dementia and Alzheimer's dementia using quantitative susceptibility mapping imaging[J]. J Alzheimers Dis, 2016, 51(3): 737-745. DOI: 10.3233/JAD-151037.
[38]
MIYATA M, KAKEDA S, KUDO K, et al. Evaluation of oxygen extraction fraction in systemic lupus erythematosus patients using quantitative susceptibility mapping[J]. J Cereb Blood Flow Metab, 2019, 39(8): 1648-1658. DOI: 10.1177/0271678X18764829.
[39]
BULK M, VAN HARTEN T, KENKHUIS B, et al. Quantitative susceptibility mapping in the thalamus and basal Ganglia of systemic lupus erythematosus patients with neuropsychiatric complaints[J/OL]. Neuroimage Clin, 2021, 30: 102637 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/33812303/. DOI: 10.1016/j.nicl.2021.102637.
[40]
WANG Y, SPINCEMAILLE P, LIU Z, et al. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care[J]. J Magn Reson Imaging, 2017, 46(4): 951-971. DOI: 10.1002/jmri.25693.
[41]
KOCH K M, NENCKA A S, SWEARINGEN B, et al. Acute post-concussive assessments of brain tissue magnetism using magnetic resonance imaging[J]. J Neurotrauma, 2021, 38(7): 848-857. DOI: 10.1089/neu.2020.7322.
[42]
DEISTUNG A, SCHWESER F, REICHENBACH J R. Overview of quantitative susceptibility mapping[J/OL]. NMR Biomed, 2017, 30(4): 10.1002/nbm.3569 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/27434134/. DOI: 10.1002/nbm.3569.
[43]
BACHRATA B, TRATTNIG S, ROBINSON S D. Quantitative susceptibility mapping of the head-and-neck using SMURF fat-water imaging with chemical shift and relaxation rate corrections[J]. Magn Reson Med, 2022, 87(3): 1461-1479. DOI: 10.1002/mrm.29069.
[44]
BRAY T J P, KARSA A, BAINBRIDGE A, et al. Association of bone mineral density and fat fraction with magnetic susceptibility in inflamed trabecular bone[J]. Magn Reson Med, 2019, 81(5): 3094-3107. DOI: 10.1002/mrm.27634.
[45]
MARQUES J P, MEINEKE J, MILOVIC C, et al. QSM reconstruction challenge 2.0: a realistic in silico head phantom for MRI data simulation and evaluation of susceptibility mapping procedures[J]. Magn Reson Med, 2021, 86(1): 526-542. DOI: 10.1002/mrm.28716.
[46]
ROBINSON S D, BREDIES K, KHABIPOVA D, et al. An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping[J/OL]. NMR Biomed, 2017, 30(4): e3601 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/27619999/. DOI: 10.1002/nbm.3601.
[47]
FENG R M, ZHAO J Y, WANG H, et al. MoDL-QSM: model-based deep learning for quantitative susceptibility mapping[J/OL]. NeuroImage, 2021, 240: 118376 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/34246768/. DOI: 10.1016/j.neuroimage.2021.118376.
[48]
MARXREITER F, LAMBRECHT V, MENNECKE A, et al. Parkinson's disease or multiple system atrophy: potential separation by quantitative susceptibility mapping[J/OL]. Ther Adv Neurol Disord, 2023, 16: 17562864221143834 [2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/36846471/. DOI: 10.1177/17562864221143834.

PREV Progresseson MRI characteristics of the effect of cerebral small vessel disease on cognitive function in patients with type 2 diabetes mellitus
NEXT Research progress of magnetic resonance technology in predicting the risk of recurrence of ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn