Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance technology in predicting the risk of recurrence of ischemic stroke
LUO Tong  GAO Yang  HE Jinlong  WANG Zehua 

Cite this article as: LUO T, GAO Y, HE J L, et al. Research progress of magnetic resonance technology in predicting the risk of recurrence of ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(10): 152-156, 166. DOI:10.12015/issn.1674-8034.2023.10.027.


[Abstract] Ischemic stroke is a global medical and health problem, and its secondary prevention is a continuous focus for medical institutions at all levels, aiming to improve and enhance the existing practices. Recurrent ischemic stroke has a higher disability and mortality rate than primary ischemic stroke. Therefore, early prediction and intervention of recurrent ischemic stroke are of great significance in delaying disease progression and improving prognosis. In recent years, with the rapid development of MRI technology, the application of a variety of new technologies makes MR examination have an important significance in the prediction of recurrent ischemic stroke. Further research on the recurrence mechanism of ischemic stroke has revealed that patients with intracranial atherosclerosis who experience recurrent ischemic stroke may also exhibit atherosclerosis in different arterial beds and other causes of ischemic stroke. This article reviews the research progress of different new MRI technologies and overlapping causes in recurrent ischemic stroke, with the aim of further understanding of recurrent ischemic stroke and timely adjusting treatment plans to enable more patients to benefit from clinical diagnosis and treatment as soon as possible.
[Keywords] stroke;stroke recurrence;magnetic resonance imaging;vessel wall imaging;radiomics;overlapping etiology of stroke

LUO Tong   GAO Yang*   HE Jinlong   WANG Zehua  

Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Corresponding author: GAO Y, E-mail: 1390903990@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Healthcare and Technology Plan Project of Inner Mongolia Autonomous Region (No. 202201250).
Received  2023-05-26
Accepted  2023-09-11
DOI: 10.12015/issn.1674-8034.2023.10.027
Cite this article as: LUO T, GAO Y, HE J L, et al. Research progress of magnetic resonance technology in predicting the risk of recurrence of ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(10): 152-156, 166. DOI:10.12015/issn.1674-8034.2023.10.027.

[1]
Report on stroke prevention and treatment in China Writing Group. Brief report on stroke prevention and treatment in China, 2019[J]. Chin J Cerebrovasc Dis, 2020, 17(5): 272-281. DOI: 10.3969/j.issn.1672-5921.2020.05.008.
[2]
WANG Y N, WU S M, LIU M. Temporal trends and characteristics of stroke in China in the past 15 years[J]. West Chin Med J, 2021, 36(6): 803-807. DOI: 10.7507/1002-0179.202105046.
[3]
BOOT E, EKKER M S, PUTAALA J, et al. Ischaemic stroke in young adults: a global perspective[J]. J Neurol Neurosurg Psychiatry, 2020, 91(4): 411-417. DOI: 10.1136/jnnp-2019-322424.
[4]
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 459-480. DOI: 10.1016/S1474-4422(18)30499-X.
[5]
KOLMOS M, CHRISTOFFERSEN L, KRUUSE C. Recurrent ischemic stroke - A systematic review and meta-analysis[J/OL]. J Stroke Cerebrovasc Dis, 2021, 30(8): 105935 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/34153594/. DOI: 10.1016/j.jstrokecerebrovasdis.2021.105935.
[6]
WONG Y S, TSAI C F, ONG C T. Risk factors for stroke recurrence in patients with hemorrhagic stroke[J/OL]. Sci Rep, 2022, 12(1): 17151 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/36229641/. DOI: 10.1038/s41598-022-22090-7.
[7]
ZHAI S J, JIA L, KUKUN H J, et al. Predictive power of high-resolution vessel wall magnetic resonance imaging in ischemic stroke[J/OL]. Am J Transl Res, 2022, 14(1): 664-671 [2023-05-25]. https://pubmed.ncbi.nlm.nih.gov/35173884/.
[8]
BOUJAN T, NEUBERGER U, PFAFF J, et al. Value of Contrast-Enhanced MRA versus Time-of-Flight MRA in Acute Ischemic Stroke MRI[J]. AJNR Am J Neuroradiol, 2018, 39(9): 1710-1716. DOI: 10.3174/ajnr.A5771.
[9]
NAM K W, KIM C K, YOON B W, et al. Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke[J/OL]. Sci Rep, 2022, 12(1): 1456 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/35087157/. DOI: 10.1038/s41598-022-05465-8.
[10]
TANAKA F, UMINO M, MAEDA M, et al. Pseudocontinuous arterial spin labeling: clinical applications and usefulness in head and neck entities[J/OL]. Cancers (Basel), 2022, 14(16): 3872 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/36010866/. DOI: 10.3390/cancers14163872.
[11]
ZAHARCHUK G, DO H M, MARKS M P, et al. Arterial spin-labeling MRI can identify the presence and intensity of collateral perfusion in patients with moyamoya disease[J]. Stroke, 2011, 42(9): 2485-2491. DOI: 10.1161/STROKEAHA.111.616466.
[12]
CHNG S M, PETERSEN E T, ZIMINE I, et al. Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography[J]. Stroke, 2008, 39(12): 3248-3254. DOI: 10.1161/STROKEAHA.108.520593.
[13]
LIU S, FAN D, ZANG F, et al. Collateral circulation detected by arterial spin labeling predicts outcome in acute ischemic stroke[J]. Acta Neurol Scand, 2022, 146(5): 635-642. DOI: 10.1111/ane.13694.
[14]
DE HAVENON A, HAYNOR D R, TIRSCHWELL D L, et al. Association of Collateral Blood Vessels Detected by Arterial Spin Labeling Magnetic Resonance Imaging With Neurological Outcome After Ischemic Stroke[J]. JAMA Neurol, 2017, 74(4): 453-458. DOI: 10.1001/jamaneurol.2016.4491.
[15]
ZHOU J, FU D, MENG Y, et al. Application of three-dimensional arterial spin labeling technique in the assessment of cerebral blood perfusion in Patients with middle cerebral artery occlusion: analysis of clinical implications and prognostic factors[J/OL]. Dis Markers, 2022, 2022: 6990590 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/35990249/. DOI: 10.1155/2022/6990590.
[16]
JIANG H, REN K, LI T, et al. Correlation of the characteristics of symptomatic intracranial atherosclerotic plaques with stroke types and risk of stroke recurrence: a cohort study[J/OL]. Ann Transl Med, 2022, 10(12): 658 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/35845483/. DOI: 10.21037/atm-22-2586.
[17]
LEAO D J, AGARWAL A, MOHAN S, et al. Intracranial vessel wall imaging: applications, interpretation, and pitfalls[J]. Clin Radiol, 2020, 75(10): 730-739. DOI: 10.1016/j.crad.2020.02.006.
[18]
TIAN X, TIAN B, SHI Z, et al. Assessment of Intracranial Atherosclerotic Plaques Using 3D Black-Blood MRI: Comparison With 3D Time-of-Flight MRA and DSA[J]. J Magn Reson Imaging, 2021, 53(2): 469-478. DOI: 10.1002/jmri.27341.
[19]
ZHOU Z, CHEN S, BALU N, et al. Neural network enhanced 3D turbo spin echo for MR intracranial vessel wall imaging[J]. Magn Reson Imaging, 2021, 78: 7-17. DOI: 10.1016/j.mri.2021.01.004.
[20]
ZHANG N, ZHANG F, DENG Z, et al. 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 39 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/29898736/. DOI: 10.1186/s12968-018-0453-z.
[21]
MANDELL D M, MOSSA-BASHA M, QIAO Y, et al. Intracranial Vessel Wall MRI: Principles and Expert Consensus Recommendations of the American Society of Neuroradiology[J]. AJNR Am J Neuroradiol, 2017, 38(2): 218-229. DOI: 10.3174/ajnr.A4893.
[22]
EIDEN S, BECK C, VENHOFF N, et al. High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: Prospective comparison of whole-brain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla[J/OL]. PLoS One, 2019, 14(3): e213514 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/30849127/. DOI: 10.1371/journal.pone.0213514.
[23]
SUN B, WANG L, LI X, et al. Intracranial atherosclerotic plaque characteristics and burden associated with recurrent acute stroke: A 3D quantitative vessel wall MRI study[J/OL]. Front Aging Neurosci, 2021, 13: 706544 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/34393761/. DOI: 10.3389/fnagi.2021.706544.
[24]
WU G, WANG H, ZHAO C, et al. Large Culprit Plaque and More Intracranial Plaques Are Associated with Recurrent Stroke: A Case-Control Study Using Vessel Wall Imaging[J]. AJNR Am J Neuroradiol, 2022, 43(2): 207-215. DOI: 10.3174/ajnr.A7402.
[25]
LIN G H, SONG J X, HUANG T D, et al. Relationship between the stroke mechanism of symptomatic middle cerebral artery atherosclerotic diseases and culprit plaques based on high-resolution vessel wall imaging[J/OL]. Front Neurol, 2022, 13: 968417 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/36188409/. DOI: 10.3389/fneur.2022.968417.
[26]
FAKIH R, VARON M A, RAGHURAM A, et al. High resolution 7T MR imaging in characterizing culprit intracranial atherosclerotic plaques[J/OL]. Interv Neuroradiol, 2022: 320745312 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/36573263/. DOI: 10.1177/15910199221145760.
[27]
TANAKA K, ISHIDA F, TANIOKA S, et al. Pathological haemodynamics of a middle cerebral artery stenosis validated by computational fluid dynamics[J/OL]. BMJ Case Rep, 2022, 15(3): e244519 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/35351770/. DOI: 10.1136/bcr-2021-244519.
[28]
CHEN Z, QIN H, LIU J, et al. Characteristics of wall shear stress and pressure of intracranial atherosclerosis analyzed by a computational fluid dynamics model: A pilot study[J/OL]. Front Neurol, 2019, 10: 1372 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/32010041/. DOI: 10.3389/fneur.2019.01372.
[29]
WOO H G, KIM H G, LEE K M, et al. Wall Shear Stress Associated with Stroke Occurrence and Mechanisms in Middle Cerebral Artery Atherosclerosis[J]. J Stroke, 2023, 25(1): 132-140. DOI: 10.5853/jos.2022.02754.
[30]
WU J H, CHEN G Z, WANG P, et al. Computational fluid dynamics and functional outcome in atherosclerotic middle cerebral artery stenosis: A correlation study[J]. Chin J Magn Reson Imaging, 2021, 12(6): 10-15. DOI: 10.12015/issn.1674-8034.2021.06.003.
[31]
ZHANG D, WU X, TANG J, et al. Hemodynamics is associated with vessel wall remodeling in patients with middle cerebral artery stenosis[J]. Eur Radiol, 2021, 31(7): 5234-5242. DOI: 10.1007/s00330-020-07607-w.
[32]
LENG X, LAN L, IP H L, et al. Hemodynamics and stroke risk in intracranial atherosclerotic disease[J]. Ann Neurol, 2019, 85(5): 752-764. DOI: 10.1002/ana.25456.
[33]
MCCAGUE C, RAMLEE S, REINIUS M, et al. Introduction to radiomics for a clinical audience[J]. Clin Radiol, 2023, 78(2): 83-98. DOI: 10.1016/j.crad.2022.08.149.
[34]
ZHOU Y, WU D, YAN S, et al. Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke[J]. Korean J Radiol, 2022, 23(8): 811-820. DOI: 10.3348/kjr.2022.0160.
[35]
WANG H, SUN Y, GE Y, et al. A Clinical-Radiomics Nomogram for Functional Outcome Predictions in Ischemic Stroke[J]. Neurol Ther, 2021, 10(2): 819-832. DOI: 10.1007/s40120-021-00263-2.
[36]
QUAN G, BAN R, REN J L, et al. FLAIR and ADC image-based radiomics features as predictive biomarkers of unfavorable outcome in patients with acute ischemic stroke[J/OL]. Front Neurosci, 2021, 15: 730879 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/34602971/. DOI: 10.3389/fnins.2021.730879.
[37]
YU H, WANG Z, SUN Y, et al. Prognosis of ischemic stroke predicted by machine learning based on multi-modal MRI radiomics[J/OL]. Front Psychiatry, 2022, 13: 1105496 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/36699499/. DOI: 10.3389/fpsyt.2022.1105496.
[38]
WANG H, SUN Y, ZHU J, et al. Diffusion-weighted imaging-based radiomics for predicting 1-year ischemic stroke recurrence[J/OL]. Front Neurol, 2022, 13: 1012896 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/36388230/. DOI: 10.3389/fneur.2022.1012896.
[39]
TANG M, GAO J, MA N, et al. Radiomics nomogram for predicting stroke recurrence in symptomatic intracranial atherosclerotic stenosis[J/OL]. Front Neurosci, 2022, 16: 851353 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/35495035/. DOI: 10.3389/fnins.2022.851353.
[40]
LV J, ZHANG M, FU Y, et al. An interpretable machine learning approach for predicting 30-day readmission after stroke[J/OL]. Int J Med Inform, 2023, 174: 105050 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/36965404/. DOI: 10.1016/j.ijmedinf.2023.105050.
[41]
HOSHINO T, SISSANI L, LABREUCHE J, et al. Prevalence of Systemic Atherosclerosis Burdens and Overlapping Stroke Etiologies and Their Associations With Long-term Vascular Prognosis in Stroke With Intracranial Atherosclerotic Disease[J]. JAMA Neurol, 2018, 75(2): 203-211. DOI: 10.1001/jamaneurol.2017.3960.
[42]
CAI J M, HATSUKAMI T S, FERGUSON M S, et al. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging[J/OL]. Circulation, 2002, 106(11): 1368-1373. DOI: 10.1161/01.cir.0000028591.44554.f9.
[43]
XU Y, YUAN C, ZHOU Z, et al. Co-existing intracranial and extracranial carotid artery atherosclerotic plaques and recurrent stroke risk: a three-dimensional multicontrast cardiovascular magnetic resonance study[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 90 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/27908279/. DOI: 10.1186/s12968-016-0309-3.
[44]
LI J, LI D, YANG D, et al. Co-existing cerebrovascular atherosclerosis predicts subsequent vascular event: a multi-contrast cardiovascular magnetic resonance imaging study[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 4 [2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/31928532/. DOI: 10.1186/s12968-019-0596-6.
[45]
CHOJDAK-LUKASIEWICZ J, DZIADKOWIAK E, ZIMNY A, et al. Cerebral small vessel disease: A review[J]. Adv Clin Exp Med, 2021, 30(3): 349-356. DOI: 10.17219/acem/131216.
[46]
WARDLAW J M, SMITH E E, BIESSELS G J, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
[47]
HU L W, YANG L, LI X T, et al. Chinese consensus on diagnosis and therapy of cerebral small vessel disease[J]. Chin J Stroke, 2021, 16(7):716-726. DOI: 10.3969/j.issn.1673-5765.2021.07.013.
[48]
DERRAZ I, ABDELRADY M, GAILLARD N, et al. White Matter Hyperintensity Burden and Collateral Circulation in Large Vessel Occlusion Stroke[J]. Stroke, 2021, 52(12): 3848-3854. DOI: 10.1161/STROKEAHA.120.031736.
[49]
CHENG Z, ZHANG W, ZHAN Z, et al. Cerebral small vessel disease and prognosis in intracerebral haemorrhage: A systematic review and meta-analysis of cohort studies[J]. Eur J Neurol, 2022, 29(8): 2511-2525. DOI: 10.1111/ene.15363.
[50]
PARK J H, HEO S H, LEE M H, et al. White matter hyperintensities and recurrent stroke risk in patients with stroke with small-vessel disease[J]. Eur J Neurol, 2019, 26(6): 911-918. DOI: 10.1111/ene.13908.
[51]
TANG R, LIU Z. Relevance of cerebral small vessel disease load scores in first-ever lacunar infarction[J]. Clin Neurol Neurosurg, 2021, 200: 106368. DOI: 10.1016/j.clineuro.2020.106368.
[52]
LAU K K, LI L, SCHULZ U, et al. Total small vessel disease score and risk of recurrent stroke: Validation in 2 large cohorts[J]. Neurology, 2017, 88(24): 2260-2267. DOI: 10.1212/WNL.0000000000004042.
[53]
VAN DEN BRINK H, DOUBAL F N, DUERING M. Advanced MRI in cerebral small vessel diseas[J]. Int J Stroke, 2023, 18(1): 28-35. DOI: 10.1177/17474930221091879.

PREV Study on the application of quantitative susceptibility mapping in cognitive function assessment
NEXT Research progress of magnetic resonance vascular wall imaging in predicting ischemic stroke recurrence
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn