Share:
Share this content in WeChat
X
Review
Application of resting-state functional MRI in the study of mild traumatic brain injury
ZENG Zhe  LUO Lin  CHEN Qiang 

Cite this article as: ZENG Z, LUO L, CHEN Q. Application of resting-state functional MRI in the study of mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2023, 14(10): 167-170. DOI:10.12015/issn.1674-8034.2023.10.030.


[Abstract] Mild traumatic brain injury (mTBI) is one of the most common traumatic diseases of the nervous system and can be defined as damage to the microstructure of brain tissue with dysfunction. Conventional imaging techniques are used to evaluate mTBI patients with a high false-negative rate, and advanced MRI techniques have great potential for mTBI injury detection and prognosis prediction. The advantage of resting-state functional MRI (rs-fMRI) is that it can detect abnormalities in brain function even when the structural imaging results are not significant. This paper focuses on the usefulness of voxel-based index analysis of rs-fMRI in mTBI patients. These indicators include amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo) and functional connectivity (FC), and the advantages and disadvantages of each index are summarized in this paper to provide directions for future research.
[Keywords] mild traumatic brain injury;resting-state functional magnetic resonance imaging;magnetic resonance imaging;cognitive impairment;functional connection

ZENG Zhe   LUO Lin*   CHEN Qiang  

Department of Medical Imaging, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014010, China

Corresponding author: LUO L, E-mail: byll117@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Inner Mongolia Autonomous Region Education Department Fund (No. NJZY23021).
Received  2023-06-26
Accepted  2023-09-28
DOI: 10.12015/issn.1674-8034.2023.10.030
Cite this article as: ZENG Z, LUO L, CHEN Q. Application of resting-state functional MRI in the study of mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2023, 14(10): 167-170. DOI:10.12015/issn.1674-8034.2023.10.030.

[1]
BLENNOW K, BRODY D L, KOCHANEK P M, et al. Traumatic brain injuries[J/OL]. Nat Rev Dis Primers, 2016, 2: 16084 [2023-06-25]. https://pubmed.ncbi.nlm.nih.gov/27853132. DOI: 10.1038/nrdp.2016.84.
[2]
SOURS C, ZHUO J, ROYS S, et al. Disruptions in resting state functional connectivity and cerebral blood flow in mild traumatic brain injury patients[J/OL]. PLoS One, 2015, 10(8): e0134019 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524606. DOI: 10.1371/journal.pone.0134019.
[3]
PUIG J, ELLIS M J, KORNELSEN J, et al. Magnetic resonance imaging biomarkers of brain connectivity in predicting outcome after mild traumatic brain injury: A systematic review[J]. Neurotrauma, 2020, 37(16): 1761-1776. DOI: 10.1089/neu.2019.6623.
[4]
SHETH C, ROGOWSKA J, LEGARRETA M, et al. Functional connectivity of the anterior cingulate cortex in veterans with mild traumatic brain injury[J/OL]. Behav Brain Res, 2021, 396: 112882 [2023-06-25]. https://pubmed.ncbi.nlm.nih.gov/32853657. DOI: 10.1016/j.bbr.2020.112882.
[5]
SULLIVAN K A, BLAINE H, KAYE S A, et al. A systematic review of psychological interventions for sleep and fatigue after mild traumatic brain injury[J]. Neurotrauma, 2018, 35(2): 195-209. DOI: 10.1089/neu.2016.4958.
[6]
IRAJI A, BENSON R R, WELCH R D, et al. Resting state functional connectivity in mild traumatic brain injury at the acute stage: Independent component and seed-based analyses[J]. Neurotrauma, 2015, 32(14): 1031-1045. DOI: 10.1089/neu.2014.3610.
[7]
LUNKOVA E, GUBERMAN G I, PTITO A, et al. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis[J]. Hum Brain Mapp, 2021, 42(16): 5477-5494. DOI: 10.1002/hbm.25630.
[8]
SONG X W, DONG Z Y, LONG X Y, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing[J/OL]. PLoS One, 2011, 6(9): e25031 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176805. DOI: 10.1371/journal.pone.0025031.
[9]
CHURCHILL N W, HUTCHISON M G, GRAHAM S J, et al. Brain function associated with reaction time after sport-related concussion[J]. Brain Imaging Behav, 2021, 15(3): 1508-1517. DOI: 10.1007/s11682-020-00349-9.
[10]
LI F, LU L, SHANG S, et al. Disrupted functional network connectivity predicts cognitive impairment after acute mild traumatic brain injury[J]. CNS Neurosci Ther, 2020, 26(10): 1083-1091. DOI: 10.1111/cns.13430.
[11]
MEIER T B, GIRALDO-CHICA M, ESPAÑA L Y, et al. Resting-state fMRI metrics in acute sport-related concussion and their association with clinical recovery: A study from the NCAA-DOD CARE consortium[J]. Neurotrauma, 2020, 37(1): 152-162. DOI: 10.1089/neu.2019.6471.
[12]
MO Y, WEI Q, BAI T, et al. Bifrontal electroconvulsive therapy changed regional homogeneity and functional connectivity of left angular gyrus in major depressive disorder[J/OL]. Psychiatry Res, 2020, 294: 113461 [2023-06-25]. https://pubmed.ncbi.nlm.nih.gov/33038791. DOI: 10.1016/j.psychres.2020.113461.
[13]
WANG T Y, WEI C X, LIU Y K, et al. The changes of ReHo of local brain regions in patients with acute mild traumatic brain injury[J]. China Comput Med Imag, 2018, 24(2): 101-104. DOI: 10.19627/j.cnki.cn31-1700/th.2018.02.001.
[14]
ZANG Y, JIANG T, LU Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[15]
MEIER T B, GIRALDO-CHICA M, ESPAÑA L Y, et al. Resting-state fMRI metrics in acute sport-related concussion and their association with clinical recovery: A study from the NCAA-DOD CARE consortium[J]. Neurotrauma, 2020, 37(1): 152-162. DOI: 10.1089/neu.2019.6471.
[16]
ROSENTHAL S, GRAY M, FATIMA H, et al. Functional MR imaging: Blood oxygen level-dependent and resting state techniques in mild traumatic brain injury[J]. Neuroimaging Clin N Am, 2018, 28(1): 107-115. DOI: 10.1016/j.nic.2017.09.008.
[17]
VEDAEI F, NEWBERG A B, ALIZADEH M, et al. Resting-state functional MRI metrics in patients with chronic mild traumatic brain injury and their association with clinical cognitive performance[J/OL]. Front Hum Neurosci, 2021, 15: 768485 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8751629. DOI: 10.3389/fnhum.2021.768485.
[18]
ZHAN J, GAO L, ZHOU F, et al. Amplitude of low-frequency fluctuations in multiple-frequency bands in acute mild traumatic brain injury[J/OL]. Front Hum Neurosci, 2016, 10: 27 [2023-06-25]. https://pubmed.ncbi.nlm.nih.gov/26869907/. DOI: 10.3389/fnhum.2016.00027.
[19]
WANG J H, ZUO X N, GOHEL S, et al. Graph theoretical analysis of functional brain networks: test-retest evaluation on short-and long-term resting-state functional MRI data[J/OL]. PLoS One, 2011, 6(7): e21976 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139595. DOI: 10.1371/journal.pone.0021976.
[20]
XIONG K L, ZHANG J N, ZHANG Y L, et al. Brain functional connectivity and cognition in mild traumatic brain injury[J]. Neuroradiology, 2016, 58(7): 733-739. DOI: 10.1007/s00234-016-1675-0.
[21]
ZHOU Y. Small world properties changes in mild traumatic brain injury[J]. Magn Reson Imaging, 2017, 46(2): 518-527. DOI: 10.1002/jmri.25548.
[22]
WANG P, YANG J, YIN Z, et al. Amplitude of low-frequency fluctuation (ALFF) may be associated with cognitive impairment in schizophrenia: a correlation study[J/OL]. BMC Psychiatry, 2019, 19(1): 30 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337807. DOI: 10.1186/s12888-018-1992-4.
[23]
CHE K, MAO N, LI Y, et al. Altered spontaneous neural activity in peripartum depression: A resting-state functional magnetic resonance imaging study[J/OL]. Front Psychol, 2020, 11: 656 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7172032. DOI: 10.3389/fpsyg.2020.00656.
[24]
GOLESTANI A M, KWINTA J B, KHATAMIAN Y B, et al. The Effect of low-frequency physiological correction on the reproducibility and specificity of resting-state fMRI metrics: functional connectivity, ALFF, and ReHo[J/OL]. Front Neurosci, 2017, 11: 546 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633680. DOI: 10.3389/fnins.2017.00546.
[25]
STEPHENSON D D, MEIER T B, PABBATHI REDDY S, et al. Resting-state power and regional connectivity after pediatric mild traumatic brain injury[J]. Magn Reson Imaging, 2020, 52(6): 1701-1713. DOI: 10.1002/jmri.27249.
[26]
ZOU Q H, ZHU C Z, YANG Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[27]
MORELLI N, JOHNSON N F, KAISER K, et al. Resting-state functional connectivity responses post-mild traumatic brain injury: a systematic review[J]. Brain Inj, 2021, 35(11): 1326-1337. DOI: 10.1080/02699052.2021.1972339.
[28]
SLOBOUNOV S M, GAY M, ZHANG K, et al. Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study[J]. Neuroimage, 2011, 55(4): 1716-1727. DOI: 10.1016/j.neuroimage.2011.01.024.
[29]
SHAFI R, CRAWLEY A P, TARTAGLIA M C, et al. Sex-specific differences in resting-state functional connectivity of large-scale networks in postconcussion syndrome[J/OL]. Sci Rep, 2020, 10(1): 21982 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738671. DOI: 10.1038/s41598-020-77137-4.
[30]
IRAJI A, BENSON R R, WELCH R D, et al. Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses[J]. Neurotrauma, 2015, 32(14): 1031-1045. DOI: 10.1089/neu.2014.3610.
[31]
D'SOUZA M M, KUMAR M, CHOUDHARY A, et al. Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study[J]. Neuroradiol, 2020, 33(2): 186-197. DOI: 10.1177/1971400920901706.
[32]
AMIR J, NAIR J K R, DEL CARPIO-O'DONOVAN R, et al. Atypical resting state functional connectivity in mild traumatic brain injury[J/OL]. Brain Behav, 2021(8): e2261 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413771. DOI: 10.1002/brb3.2261.
[33]
GILMORE C S, CAMCHONG J, DAVENPORT N D, et al. Deficits in visual system functional connectivity after blast-related mild TBI are associated with injury severity and executive dysfunction[J/OL]. Brain Behav, 2016, 6(5): e00454 [2023-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873652. DOI: 10.1002/brb3.454.
[34]
IRAJI A, CHEN H, WISEMAN N, et al. Connectome-scale assessment of structural and functional connectivity in mild traumatic brain injury at the acute stage[J]. Neuroimage Clin, 2016, 12: 100-115. DOI: 10.1016/j.nicl.2016.06.012.

PREV Research progress of t-ASL in cerebrovascular related diseases
NEXT Advances in functional magnetic resonance and radiometrics in liver transplantation
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn