Share:
Share this content in WeChat
X
Review
Advances of MRI in evaluating the efficacy of neoadjuvant therapy for pancreatic cancer
FU Qinglin  CHEN Jie 

Cite this article as: FU Q L, CHEN J. Advances of MRI in evaluating the efficacy of neoadjuvant therapy for pancreatic cancer[J]. Chin J Magn Reson Imaging, 2023, 14(10): 177-182. DOI:10.12015/issn.1674-8034.2023.10.032.


[Abstract] Neoadjuvant treatment (NAT) improves the possibility of radical resection of pancreatic cancer and can help improve patient outcomes. However, the efficacy of NAT varies greatly among patients due to individual differences. Early and accurate evaluations of the efficacy of NAT has become one of the hotspots in pancreatic cancer. MRI, which can non-invasively evaluate the therapy response, indirectly reflects the changes of tumor cells and microenvironments from a anatomy and function and makes up for the insufficiency of other imaging techniques. This paper reviews the current status of conventional MRI and functional MRI techniques, including diffusion weighted imaging, intravoxel incoherent motion, dynamic contrast enhanced MRI, T1 mapping, T2 mapping and PET/MRI, in evaluating NAT efficacy in pancreatic cancer, so as to assist clinical to develop effective diagnosis and treatment strategies. It is convenient for clinicians and researchers to systematically and comprehensively understand the changes of tumor microenvironment caused by NAT in pancreatic cancer and the differences in imaging findings of treatment-related responses. With the development of functional MRI and the advancement of multi-parameter MRI, The MRI based comprehensive sequence evaluation system for pancreatic cancer is expected to be constructed in the future.
[Keywords] pancreatic cancer;pancreatic malignant tumor;magnetic resonance imaging;neoadjuvant treatment;efficacy evaluation;prognosis

FU Qinglin   CHEN Jie*  

Department of Radiology, the Third Affiliated Hospital to Soochow University, Changzhou 213003, China

Corresponding author: CHEN J, E-mail: slqyuer@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81971572).
Received  2023-06-30
Accepted  2023-10-04
DOI: 10.12015/issn.1674-8034.2023.10.032
Cite this article as: FU Q L, CHEN J. Advances of MRI in evaluating the efficacy of neoadjuvant therapy for pancreatic cancer[J]. Chin J Magn Reson Imaging, 2023, 14(10): 177-182. DOI:10.12015/issn.1674-8034.2023.10.032.

[1]
SIEGEL R, MILLER K, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
[2]
PARK W, CHAWLA A, O'REILLY E M. Pancreatic cancer: a review[J]. JAMA, 2021, 326(9): 851-862. DOI: 10.1001/jama.2021.13027.
[3]
JUNG H S, KIM H S, KANG J S, et al. Oncologic benefits of neoadjuvant treatment versus upfront surgery in borderline resectable pancreatic cancer: a systematic review and meta-analysis[J/OL]. Cancers, 2022, 14(18): 4360 [2023-03-28]. https://pubmed.ncbi.nlm.nih.gov/36139520/. DOI: 10.3390/cancers14184360.
[4]
ADAM M A, NASSOUR I, HOEHN R, et al. Neoadjuvant chemotherapy for pancreatic adenocarcinoma lessens the deleterious effect of omission of adjuvant chemotherapy[J]. Ann Surg Oncol, 2021, 28(7): 3800-3807. DOI: 10.1245/s10434-020-09446-x.
[5]
TSAI S, CHRISTIANS K K, GEORGE B, et al. A phase Ⅱ clinical trial of molecular profiled neoadjuvant therapy for localized pancreatic ductal adenocarcinoma[J]. Ann Surg, 2018, 268(4): 610-619. DOI: 10.1097/SLA.0000000000002957.
[6]
YANG P P, MAO K Z, GAO Y S, et al. Tumor size measurements of pancreatic cancer with neoadjuvant therapy based on RECIST guidelines: is MRI as effective as CT?[J/OL]. Cancer Imaging, 2023, 23(1): 8 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/36653861/. DOI: 10.1186/s40644-023-00528-z.
[7]
ALABOUSI M, MCINNES M D, SALAMEH J P, et al. MRI vs. CT for the detection of liver metastases in patients with pancreatic carcinoma: a comparative diagnostic test accuracy systematic review and meta-analysis[J]. J Magn Reson Imaging, 2021, 53(1): 38-48. DOI: 10.1002/jmri.27056.
[8]
STOOP T F, VAN VELDHUISEN E, VAN RIJSSEN L B, et al. Added value of 3T MRI and the MRI-halo sign in assessing resectability of locally advanced pancreatic cancer following induction chemotherapy (IMAGE-MRI): prospective pilot study[J]. Langenbecks Arch Surg, 2022, 407(8): 3487-3499. DOI: 10.1007/s00423-022-02653-y.
[9]
JANG J K, BYUN J H, KANG J H, et al. CT-determined resectability of borderline resectable and unresectable pancreatic adenocarcinoma following FOLFIRINOX therapy[J]. Eur Radiol, 2021, 31(2): 813-823. DOI: 10.1007/s00330-020-07188-8.
[10]
MICHELAKOS T, PERGOLINI I, CASTILLO C F, et al. Predictors of resectability and survival in patients with borderline and locally advanced pancreatic cancer who underwent neoadjuvant treatment with FOLFIRINOX[J]. Ann Surg, 2019, 269(4): 733-740. DOI: 10.1097/SLA.0000000000002600.
[11]
KLAASSEN R, STEINS A, GURNEY-CHAMPION O J, et al. Pathological validation and prognostic potential of quantitative MRI in the characterization of pancreas cancer: preliminary experience[J]. Mol Oncol, 2020, 14(9): 2176-2189. DOI: 10.1002/1878-0261.12688.
[12]
MAYER P, FRITZ F, KOELL M, et al. Assessment of tissue perfusion of pancreatic cancer as potential imaging biomarker by means of Intravoxel incoherent motion MRI and CT perfusion: correlation with histological microvessel density as ground truth[J/OL]. Cancer Imaging, 2021, 21(1): 13 [2022-06-20]. https://pubmed.ncbi.nlm.nih.gov/33468259/. DOI: 10.1186/s40644-021-00382-x.
[13]
HUSSIEN N, HUSSIEN R S, SAAD D H A, et al. The role of MRI pancreatic protocol in assessing response to neoadjuvant therapy for patients with borderline resectable pancreatic cancer[J/OL]. Front Oncol, 2021, 11: 796317 [2022-06-16]. https://pubmed.ncbi.nlm.nih.gov/35096596/. DOI: 10.3389/fonc.2021.796317.
[14]
OKADA K I, KAWAI M, HIRONO S, et al. Diffusion-weighted MRI predicts the histologic response for neoadjuvant therapy in patients with pancreatic cancer: a prospective study (DIFFERENT trial)[J]. Langenbecks Arch Surg, 2020, 405(1): 23-33. DOI: 10.1007/s00423-020-01857-4.
[15]
LEE S, KIM S H, PARK H K, et al. Pancreatic ductal adenocarcinoma: rim enhancement at MR imaging predicts prognosis after curative resection[J]. Radiology, 2018, 288(2): 456-466. DOI: 10.1148/radiol.2018172331.
[16]
ZIMMERMANN C, DISTLER M, JENTSCH C, et al. Evaluation of response using FDG-PET/CT and diffusion weighted MRI after radiochemotherapy of pancreatic cancer: anon-randomized, monocentric phase Ⅱ clinical trial-PaCa-DD-041 (Eudra-CT 2009-011968-11)[J]. Al, 2021, 197(1): 19-26. DOI: 10.1007/s00066-020-01654-4.
[17]
NISHIOFUKU H, TANAKA T, MARUGAMI N, et al. Increased tumour ADC value during chemotherapy predicts improved survival in unresectable pancreatic cancer[J]. Eur Radiol, 2016, 26(6): 1835-1842. DOI: 10.1007/s00330-015-3999-2.
[18]
LIU Q, ZHANG J G, JIANG M, et al. Evaluating the histopathology of pancreatic ductal adenocarcinoma by intravoxel incoherent motion-diffusion weighted imaging comparing with diffusion-weighted imaging[J/OL]. Front Oncol, 2021, 11: 670085 [2022-09-20]. https://pubmed.ncbi.nlm.nih.gov/34249707/. DOI: 10.3389/fonc.2021.670085.
[19]
QU C, ZENG P E, WANG H Y, et al. Preoperative multiparametric quantitative magnetic resonance imaging correlates with prognosis and recurrence patterns in pancreatic ductal adenocarcinoma[J/OL]. Cancers, 2022, 14(17): 4243 [2022-09-29]. https://pubmed.ncbi.nlm.nih.gov/36077777/. DOI: 10.3390/cancers14174243.
[20]
WU L, LI J, FU C X, et al. Chemotherapy response of pancreatic cancer by diffusion-weighted imaging (DWI) and intravoxel incoherent motion DWI (IVIM-DWI) in an orthotopic mouse model[J]. MAGMA, 2019, 32(4): 501-509. DOI: 10.1007/s10334-019-00745-3.
[21]
KLAASSEN R, GURNEY-CHAMPION O J, ENGELBRECHT M R W, et al. Evaluation of six diffusion-weighted MRI models for assessing effects of neoadjuvant chemoradiation in pancreatic cancer patients[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1052-1062. DOI: 10.1016/j.ijrobp.2018.04.064.
[22]
PIJNAPPEL E N, WASSENAAR N P M, GURNEY-CHAMPION O J, et al. Phase Ⅰ/Ⅱ study of LDE225 in combination with gemcitabine and nab-paclitaxel in patients with metastatic pancreatic cancer[J/OL]. Cancers, 2021, 13(19): 4869 [2023-06-28]. https://pubmed.ncbi.nlm.nih.gov/34638351/. DOI: 10.3390/cancers13194869.
[23]
ZHAO J, LI H B. Application progress of intravoxel incoherent motion imaging in clinical diagnosis and treatment of rectal cancer[J]. Chin J Magn Reson Imag, 2021, 12(12): 108-111. DOI: 10.12015/issn.1674-8034.2021.12.026.
[24]
ZABORIENĖ I, STRAKŠYTĖ V, IGNATAVIČIUS P, et al. Dynamic contrast-enhanced magnetic resonance imaging for measuring perfusion in pancreatic ductal adenocarcinoma and different tumor grade: a preliminary single center study[J/OL]. Diagnostics, 2023, 13(3): 521 [2023-04-01]. https://pubmed.ncbi.nlm.nih.gov/36766626/. DOI: 10.3390/diagnostics13030521.
[25]
KIM H, MORGAN D E, SCHEXNAILDER P, et al. Accurate therapeutic response assessment of pancreatic ductal adenocarcinoma using quantitative dynamic contrast-enhanced magnetic resonance imaging with a point-of-care perfusion phantom: a pilot study[J]. Invest Radiol, 2019, 54(1): 16-22. DOI: 10.1097/RLI.0000000000000505.
[26]
KINH DO R, REYNGOLD M, PAUDYAL R, et al. Diffusion-weighted and dynamic contrast-enhanced MRI derived imaging metrics for stereotactic body radiotherapy of pancreatic ductal adenocarcinoma: preliminary findings[J]. Tomography, 2020, 6(2): 261-271. DOI: 10.18383/j.tom.2020.00015.
[27]
FUKUKURA Y, KUMAGAE Y, FUJISAKI Y, et al. Extracellular volume fraction with MRI: As an alternative predictive biomarker to dynamic contrast-enhanced MRI for chemotherapy response of pancreatic ductal adenocarcinoma[J/OL]. Eur J Radiol, 2021, 145: 110036 [2022-06-26]. https://pubmed.ncbi.nlm.nih.gov/34814039/. DOI: 10.1016/j.ejrad.2021.110036.
[28]
TANG W, LIU W, LI H M, et al. Quantitative dynamic contrast-enhanced MR imaging for the preliminary prediction of the response to gemcitabine-based chemotherapy in advanced pancreatic ductal carcinoma[J/OL]. Eur J Radiol, 2019, 121: 108734 [2022-06-26]. https://pubmed.ncbi.nlm.nih.gov/31743881/. DOI: 10.1016/j.ejrad.2019.108734.
[29]
EICHHORN C, GREULICH S, BUCCIARELLI-DUCCI C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication ofMyocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(7): 1325-1338. DOI: 10.1016/j.jcmg.2021.11.017.
[30]
O'BRIEN A T, GIL K E, VARGHESE J, et al. T2 mapping in myocardial disease: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 33 [2023-04-01]. https://pubmed.ncbi.nlm.nih.gov/35659266/. DOI: 10.1186/s12968-022-00866-0.
[31]
KANG J H, LEE S S, KIM J H, et al. Multiparametric MRI for prediction of treatment response to neoadjuvant FOLFIRINOX therapy in borderline resectable or locally advanced pancreatic cancer[J]. Eur Radiol, 2021, 31(2): 864-874. DOI: 10.1007/s00330-020-07134-8.
[32]
TOMASZEWSKI M R, DOMINGUEZ-VIQUEIRA W, ORTIZ A, et al. Heterogeneity analysis of MRI T2 maps for measurement of early tumor response to radiotherapy[J/OL]. NMR Biomed, 2021, 34(3): e4454 [2023-04-01]. https://pubmed.ncbi.nlm.nih.gov/33325086/. DOI: 10.1002/nbm.4454.
[33]
ZHANG Z Z, ZHOU N N, GUO X Y, et al. Pretherapeutic assessment of pancreatic cancer: comparison of FDG PET/CT plus delayed PET/MR and contrast-enhanced CT/MR[J/OL]. Front Oncol, 2021, 11: 790462 [2022-09-29]. https://pubmed.ncbi.nlm.nih.gov/35096590/. DOI: 10.3389/fonc.2021.790462.
[34]
LI J D, FU C J, ZHAO S, et al. The progress of PET/MRI in clinical management of patients with pancreatic malignant lesions[J/OL]. Front Oncol, 2023, 13: 920896 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/37188192/. DOI: 10.3389/fonc.2023.920896.
[35]
WANG Z J, BEHR S, CONSUNJI M V, et al. Early response assessment in pancreatic ductal adenocarcinoma through integrated PET/MRI[J]. AJR Am J Roentgenol, 2018, 211(5): 1010-1019. DOI: 10.2214/AJR.18.19602.
[36]
HARDER F N, JUNGMANN F, KAISSIS G A, et al. 18F-FDG PET/MRI enables early chemotherapy response prediction in pancreatic ductal adenocarcinoma[J/OL]. EJNMMI Res, 2021, 11(1): 70 [2022-06-16]. https://pubmed.ncbi.nlm.nih.gov/34322781/. DOI: 10.1186/s13550-021-00808-4.
[37]
PANDA A, GARG I, TRUTY M J, et al. Borderline resectable and locally advanced pancreatic cancer: FDG PET/MRI and CT tumor metrics for assessment of pathologic response to neoadjuvant therapy and prediction of survival[J]. AJR Am J Roentgenol, 2021, 217(3): 730-740. DOI: 10.2214/AJR.20.24567.
[38]
XU J W, ZHAN H X, LI F, et al. Neoadjuvant therapy for pancreatic cancer: limitations and advances of response assessment (Review)[J/OL]. Oncol Rep, 2021, 45(4): 26 [2023-09-20]. https://pubmed.ncbi.nlm.nih.gov/33649823/. DOI: 10.3892/or.2021.7977.
[39]
AKITA H, TAKAHASHI H, OHIGASHI H, et al. FDG-PET predicts treatment efficacy and surgical outcome of pre-operative chemoradiation therapy for resectable and borderline resectable pancreatic cancer[J]. Eur J Surg Oncol, 2017, 43(6): 1061-1067. DOI: 10.1016/j.ejso.2017.03.015.
[40]
FANG J, HUANG X H, LIU N, et al. Research progress of radiomics in evaluation of curative effect of pancreatic cancer[J]. Chin J Magn Reson Imag, 2021, 12(10): 105-108. DOI: 10.12015/issn.1674-8034.2021.10.027.
[41]
DUAN Y L, YANG G J, MIAO W J, et al. Computed tomography-based radiomics analysis for prediction of response to neoadjuvant chemotherapy in breast cancer patients[J]. J Comput Assist Tomogr, 2023, 47(2): 199-204. DOI: 10.1097/RCT.0000000000001426.
[42]
ROSSI G, ALTABELLA L, SIMONI N, et al. Computed tomography-based radiomic to predict resectability in locally advanced pancreatic cancer treated with chemotherapy and radiotherapy[J]. World J Gastrointest Oncol, 2022, 14(3): 703-715. DOI: 10.4251/wjgo.v14.i3.703.
[43]
SIMPSON G, SPIELER B, DOGAN N, et al. Predictive value of 0.35T magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of pancreatic cancer: a pilot study[J]. Med Phys, 2020, 47(8): 3682-3690. DOI: 10.1002/mp.14200.
[44]
ERSTAD D J, SOJOODI M, TAYLOR M S, et al. Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI[J]. Clin Cancer Res, 2020, 26(18): 5007-5018. DOI: 10.1158/1078-0432.CCR-18-1359.
[45]
ZHENG X, SHEN F M, ZHENG D C, et al. The application of magnetic resonance diffusion kurtosis imaging in efficacy evaluation of early radiotherapy of cervical carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(2): 68-72, 82. DOI: 10.12015/issn.1674-8034.2023.02.012.
[46]
LU Z Y, ZHANG H, YUE M Y, et al. Research progress of ~1H-MRS in breast cancer[J]. Chin J Magn Reson Imag, 2021, 12(1): 112-114. DOI: 10.12015/issn.1674-8034.2021.01.027.
[47]
MA W T, WANG L L, WEI Z K, et al. Research progress of amide proton transfer imaging in rectal neoplasms[J]. Chin J Magn Reson Imag, 2023, 14(3): 189-192, 197. DOI: 10.12015/issn.1674-8034.2023.03.035.
[48]
LI J, LIN L J, GAO X M, et al. Amide proton transfer weighted and intravoxel incoherent motion imaging in evaluation of prognostic factors for rectal adenocarcinoma[J/OL]. Front Oncol, 2021, 11: 783544 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/35047400/. DOI: 10.3389/fonc.2021.783544.
[49]
GRANATA V, FUSCO R, SANSONE M, et al. Magnetic resonance imaging in the assessment of pancreatic cancer with quantitative parameter extraction by means of dynamic contrast-enhanced magnetic resonance imaging, diffusion kurtosis imaging and intravoxel incoherent motion diffusion-weighted imaging[J/OL]. Therap Adv Gastroenterol, 2020, 13: 1756284819885052 [2023-09-20]. https://pubmed.ncbi.nlm.nih.gov/32499833/. DOI: 10.1177/1756284819885052.

PREV Advances in functional magnetic resonance and radiometrics in liver transplantation
NEXT Progress of MRI in evaluation of pelvic lymph node metastasis from cervical cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn