Share:
Share this content in WeChat
X
Review
Progress of MRI in evaluation of pelvic lymph node metastasis from cervical cancer
XU Xiaoqian  KANG Liqing  LIU Fenghai 

Cite this article as: XU X Q, KANG L Q, LIU F H. Progress of MRI in evaluation of pelvic lymph node metastasis from cervical cancer[J]. Chin J Magn Reson Imaging, 2023, 14(10): 183-188. DOI:10.12015/issn.1674-8034.2023.10.033.


[Abstract] Cervical cancer is the fourth leading cause of cancer-related deaths in women. Pelvic lymph nodes metastasis (PLNM) is the most important route of dissemination. The accurate assessment of PLNM is beneficial for further improving risk stratification and individualization of treatment, so as to improve the outcome of cervical cancer patients. MRI is the most commonly used non-invasive method for pretreatment pelvic lymph node assessment. In this review, we comprehensively review the value and study progress of conventional MRI, functional MRI and MRI-related intelligent imaging methods in evaluating pelvic lymph node metastasis from cervical cancer, in order to accurately and efficiently identify the status of lymph nodes before surgery and provide imaging guidance for the development of personalized and precise treatment strategies in clinical practice.
[Keywords] cervical cancer;lymph node metastasis;magnetic resonance imaging;radiomics;deep learning

XU Xiaoqian1   KANG Liqing1, 2*   LIU Fenghai1, 2  

1 Department of Magnetic Resonance Imaging, Medical University affiliated Cangzhou Central Hospital, Cangzhou 061000, China

2 Department of Magnetic Resonance Imaging, Cangzhou Central Hospital, Cangzhou 061000, China

Corresponding author: KANG L Q, E-mail: 1513203473@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Research and Development Program of Cangzhou (No. 183302016).
Received  2023-07-25
Accepted  2023-10-04
DOI: 10.12015/issn.1674-8034.2023.10.033
Cite this article as: XU X Q, KANG L Q, LIU F H. Progress of MRI in evaluation of pelvic lymph node metastasis from cervical cancer[J]. Chin J Magn Reson Imaging, 2023, 14(10): 183-188. DOI:10.12015/issn.1674-8034.2023.10.033.

[1]
SINGH D, VIGNAT J, LORENZONI V, et al. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative[J/OL]. Lancet Glob Health, 2023, 11(2): e197-e206 [2023-06-22]. https://pubmed.ncbi.nlm.nih.gov/36528031/. DOI: 10.1016/S2214-109X(22)00501-0.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
YAHATA H, KODAMA K, OKUGAWA K, et al. Long-term follow up after sentinel node biopsy alone for early-stage cervical cancer[J]. Gynecol Oncol, 2022, 165(1): 149-154. DOI: 10.1016/j.ygyno.2022.01.031.
[4]
ZHONG M L, WANG Y N, LIANG M R, et al. Consolidation chemotherapy in early-stage cervical cancer patients with lymph node metastasis after radical hysterectomy[J]. Int J Gynecol Cancer, 2020, 30(5): 602-606. DOI: 10.1136/ijgc-2019-000690.
[5]
CIBULA D, DOSTALEK L, HILLEMANNS P, et al. Completion of radical hysterectomy does not improve survival of patients with cervical cancer and intraoperatively detected lymph node involvement: ABRAX international retrospective cohort study[J]. Eur J Cancer, 2021, 143: 88-100. DOI: 10.1016/j.ejca.2020.10.037.
[6]
KIDO A, NAKAMOTO Y. Implications of the new FIGO staging and the role of imaging in cervical cancer[J/OL]. Br J Radiol, 2021, 94(1125): 20201342 [2022-11-02]. https://pubmed.ncbi.nlm.nih.gov/33989030/. DOI: 10.1259/bjr.20201342.
[7]
LIU B, GAO S J, LI S F. A comprehensive comparison of CT, MRI, positron emission tomography or positron emission tomography/CT, and diffusion weighted imaging-MRI for detecting the lymph nodes metastases in patients with cervical cancer: a meta-analysis based on 67 studies[J]. Gynecol Obstet Invest, 2017, 82(3): 209-222. DOI: 10.1159/000456006.
[8]
LUO L, LUO Q, TANG L. Diagnostic value and clinical significance of MRI and CT in detecting lymph node metastasis of early cervical cancer[J]. Oncol Lett, 2020, 19(1): 700-706. DOI: 10.3892/ol.2019.11180.
[9]
YAN B C, LI Y, MA F H, et al. Radiologists with MRI-based radiomics aids to predict the pelvic lymph node metastasis in endometrial cancer: a multicenter study[J]. Eur Radiol, 2021, 31(1): 411-422. DOI: 10.1007/s00330-020-07099-8.
[10]
DEZEN T, ROSSINI R R, SPADIN M D, et al. Accuracy of MRI for diagnosing pelvic and para-aortic lymph node metastasis in cervical cancer[J/OL]. Oncol Rep, 2021, 45(6): 100 [2023-06-22]. https://pubmed.ncbi.nlm.nih.gov/33907843/. DOI: 10.3892/or.2021.8051.
[11]
LERAY H, GABIACHE E, COURBON F, et al. 18F-FDG PET/CT identifies predictors of survival in patients with locally advanced cervical carcinoma and paraaortic lymph node involvement to allow intensification of treatment[J]. J Nucl Med, 2020, 61(10): 1442-1447. DOI: 10.2967/jnumed.119.238824.
[12]
ADAM J A, VAN DIEPEN P R, MOM C H, et al. 18F]FDG-PET or PET/CT in the evaluation of pelvic and para-aortic lymph nodes in patients with locally advanced cervical cancer: a systematic review of the literature[J]. Gynecol Oncol, 2020, 159(2): 588-596. DOI: 10.1016/j.ygyno.2020.08.021.
[13]
NGUYEN N C, BERIWAL S, MOON C H, et al. Diagnostic value of FDG PET/MRI in females with pelvic malignancy-a systematic review of the literature[J/OL]. Front Oncol, 2020, 10: 519440 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/33123460/. DOI: 10.3389/fonc.2020.519440.
[14]
XU J, MA Y L, MEI H B, et al. Diagnostic value of multimodal magnetic resonance imaging in discriminating between metastatic and non-metastatic pelvic lymph nodes in cervical cancer[J]. Int J Gen Med, 2022, 15: 6279-6288. DOI: 10.2147/IJGM.S372154.
[15]
ZHANG X M, DONG Y, SONG Q L, et al. The role of multiparametric magnetic resonance imaging in the study of primary tumor and pelvic lymph node metastasis in stage IB1-IIA1 cervical cancer[J]. J Comput Assist Tomogr, 2020, 44(5): 750-758. DOI: 10.1097/RCT.0000000000001084.
[16]
KIM S H, CHO S H. Assessment of pelvic lymph node metastasis in FIGO IB and IIA cervical cancer using quantitative dynamic contrast-enhanced MRI parameters[J]. Diagn Interv Radiol, 2020, 26(5): 382-389. DOI: 10.5152/dir.2020.19365.
[17]
HARRY V N, PERSAD S, BASSAW B, et al. Diffusion-weighted MRI to detect early response to chemoradiation in cervical cancer: a systematic review and meta-analysis[J/OL]. Gynecol Oncol Rep, 2021, 38: 100883 [2023-01-15]. https://pubmed.ncbi.nlm.nih.gov/34926764/. DOI: 10.1016/j.gore.2021.100883.
[18]
CAROLI A. Diffusion-weighted magnetic resonance imaging: clinical potential and applications[J/OL]. J Clin Med, 2022, 11(12): 3339 [2023-03-14]. https://pubmed.ncbi.nlm.nih.gov/35743409/. DOI: 10.3390/jcm11123339.
[19]
HE X Q, WEI L N. Diagnostic value of lymph node metastasis by diffusion-weighted magnetic resonance imaging in cervical cancer[J]. J Cancer Res Ther, 2016, 12(1): 77-83. DOI: 10.4103/0973-1482.148726.
[20]
GE Y X, HU S D, WANG Z, et al. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer[J]. Eur Radiol, 2021, 31(5): 3347-3354. DOI: 10.1007/s00330-020-07359-7.
[21]
CHEN F J, YANG H P, ZHU R. Analysis of IVIM DWI for the clinical diagnosis of cervical cancer[J]. Panminerva Med, 2022, 64(3): 409-410. DOI: 10.23736/S0031-0808.20.03907-5.
[22]
RAN Y T, BEI G G. The correlation between intravoxel incoherent motion and microvessel density and pathological differentiation of cervical cancer[J]. Chin J Magn Reson Imag, 2021, 12(7): 72-76. DOI: 10.12015/issn.1674-8034.2021.07.015.
[23]
WU Q X, ZHENG D D, SHI L G, et al. Differentiating metastatic from nonmetastatic lymph nodes in cervical cancer patients using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging[J]. Eur Radiol, 2017, 27(12): 5272-5279. DOI: 10.1007/s00330-017-4873-1.
[24]
PERUCHO J A U, CHIU K W H, WONG E M F, et al. Diffusion-weighted magnetic resonance imaging of primary cervical cancer in the detection of sub-centimetre metastatic lymph nodes[J/OL]. Cancer Imaging, 2020, 20(1): 27 [2023-04-17]. https://pubmed.ncbi.nlm.nih.gov/32252829/. DOI: 10.1186/s40644-020-00303-4.
[25]
ZHANG Y, ZHANG K Y, JIA H D, et al. Feasibility of predicting pelvic lymph node metastasis based on IVIM-DWI and texture parameters of the primary lesion and lymph nodes in patients with cervical cancer[J]. Acad Radiol, 2022, 29(7): 1048-1057. DOI: 10.1016/j.acra.2021.08.026.
[26]
ZHOU Y, LIU J Y, LIU C R, et al. Intravoxel incoherent motion diffusion weighted MRI of cervical cancer-Correlated with tumor differentiation and perfusion[J]. Magn Reson Imaging, 2016, 34(8): 1050-1056. DOI: 10.1016/j.mri.2016.04.009.
[27]
PAOLA V D, PERILLO F, GUI B, et al. Detection of parametrial invasion in women with uterine cervical cancer using diffusion tensor imaging at 1.5T MRI[J]. Diagn Interv Imaging, 2022, 103(10): 472-478. DOI: 10.1016/j.diii.2022.05.005.
[28]
YAMADA I, OSHIMA N, WAKABAYASHI A, et al. Diffusion-tensor imaging of uterine cervical carcinoma: correlation with histopathologic findings[J]. J Comput Assist Tomogr, 2020, 44(3): 426-435. DOI: 10.1097/RCT.0000000000001014.
[29]
ZHANG D D, GENG X C, SUO S T, et al. The predictive value of DKI in breast cancer: does tumour subtype affect pathological response evaluations?[J]. Magn Reson Imaging, 2022, 85: 28-34. DOI: 10.1016/j.mri.2021.10.013.
[30]
CAO K, WANG S, ZHAO B, et al. MR diffusion kurtosis imaging versus standard diffusion imaging: changes with radiation in uterine cervical carcinoma xenografts[J]. Chin J Magn Reson Imag, 2017, 8(9): 685-690. DOI: 10.12015/issn.1674-8034.2017.09.008.
[31]
HU S, PENG Y, WANG Q S, et al. T2*-weighted imaging and diffusion kurtosis imaging (DKI) of rectal cancer: correlation with clinical histopathologic prognostic factors[J]. Abdom Radiol, 2022, 47(2): 517-529. DOI: 10.1007/s00261-021-03369-1.
[32]
MENG N, WANG X J, SUN J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[33]
HUANG Q H, WANG Y C, MENG X Y, et al. Amide proton transfer-weighted imaging combined with ZOOMit diffusion kurtosis imaging in predicting lymph node metastasis of cervical cancer[J/OL]. Bioengineering, 2023, 10(3): 331 [2023-05-19]. https://pubmed.ncbi.nlm.nih.gov/36978722/. DOI: 10.3390/bioengineering10030331.
[34]
DENG X J, LIU M L, ZHOU Q, et al. Predicting treatment response to concurrent chemoradiotherapy in squamous cell carcinoma of the cervix using amide proton transfer imaging and intravoxel incoherent motion imaging[J]. Diagn Interv Imaging, 2022, 103(12): 618-624. DOI: 10.1016/j.diii.2022.09.001.
[35]
RIVLIN M, NAVON G. Molecular imaging of cancer by glucosamine chemical exchange saturation transfer MRI: a preclinical study[J/OL]. NMR Biomed, 2021, 34(2): e4431 [2023-02-22]. https://pubmed.ncbi.nlm.nih.gov/33103831/. DOI: 10.1002/nbm.4431.
[36]
WANG H J, CAI Q, HUANG Y P, et al. Amide proton transfer-weighted MRI in predicting histologic grade of bladder cancer[J/OL]. Radiology, 2022, 305(1): E59 [2023-06-22]. https://pubmed.ncbi.nlm.nih.gov/36154289/. DOI: 10.1148/radiol.229017.
[37]
HOU M Y, SONG K, REN J P, et al. Comparative analysis of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in evaluating the histological grade of cervical squamous carcinoma[J/OL]. BMC Cancer, 2022, 22(1): 87 [2023-06-11]. https://pubmed.ncbi.nlm.nih.gov/35057777/. DOI: 10.1186/s12885-022-09205-z.
[38]
YANG L, WANG L, TAN Y C, et al. Amide Proton Transfer-weighted MRI combined with serum prostate-specific antigen levels for differentiating malignant prostate lesions from benign prostate lesions: a retrospective cohort study[J/OL]. Cancer Imaging, 2023, 23(1): 3 [2023-07-26]. https://pubmed.ncbi.nlm.nih.gov/36611191/. DOI: 10.1186/s40644-022-00515-w.
[39]
CHEN W C, LI L, YAN Z X, et al. Three-dimension amide proton transfer MRI of rectal adenocarcinoma: correlation with pathologic prognostic factors and comparison with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(5): 3286-3296. DOI: 10.1007/s00330-020-07397-1.
[40]
YUWEN ZHOU I, WANG E F, CHEUNG J S, et al. Direct saturation-corrected chemical exchange saturation transfer MRI of glioma: simplified decoupling of amide proton transfer and nuclear overhauser effect contrasts[J]. Magn Reson Med, 2017, 78(6): 2307-2314. DOI: 10.1002/mrm.26959.
[41]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[42]
LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309.
[43]
XIA X M, LI D D, DU W, et al. Radiomics based on nomogram predict pelvic lymphnode metastasis in early-stage cervical cancer[J/OL]. Diagnostics, 2022, 12(10): 2446 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/36292135/. DOI: 10.3390/diagnostics12102446.
[44]
WANG T, GAO T T, YANG J B, et al. Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusion-weighted imaging[J]. Eur J Radiol, 2019, 114: 128-135. DOI: 10.1016/j.ejrad.2019.01.003.
[45]
YAN L F, YAO H S, LONG R C, et al. A preoperative radiomics model for the identification of lymph node metastasis in patients with early-stage cervical squamous cell carcinoma[J/OL]. Br J Radiol, 2020, 93(1116): 20200358 [2023-06-06]. https://pubmed.ncbi.nlm.nih.gov/32960673/. DOI: 10.1259/bjr.20200358.
[46]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 80 [2023-01-26]. https://pubmed.ncbi.nlm.nih.gov/28521821/. DOI: 10.1186/s13058-017-0862-1.
[47]
WU Q X, WANG S, CHEN X, et al. Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer[J]. Radiother Oncol, 2019, 138: 141-148. DOI: 10.1016/j.radonc.2019.04.035.
[48]
LI H, CHEN X L, LIU H, et al. MRI-based multiregional radiomics for preoperative prediction of tumor deposit and prognosis in resectable rectal cancer: a bicenter study[J]. Eur Radiol, 2023 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/37160427/. DOI: 10.1007/s00330-023-09723-9.
[49]
SHI J X, DONG Y, JIANG W Y, et al. MRI-based peritumoral radiomics analysis for preoperative prediction of lymph node metastasis in early-stage cervical cancer: a multi-center study[J]. Magn Reson Imaging, 2022, 88: 1-8. DOI: 10.1016/j.mri.2021.12.008.
[50]
ZHANG Z H, WAN X J, LEI X Y, et al. Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer[J/OL]. Insights Imaging, 2023, 14(1): 65 [2023-06-09]. https://pubmed.ncbi.nlm.nih.gov/37060378/. DOI: 10.1186/s13244-023-01405-w.
[51]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[52]
PAPADIMITROULAS P, BROCKI L, CHRISTOPHER CHUNG N, et al. Artificial intelligence: deep learning in oncological radiomics and challenges of interpretability and data harmonization[J]. Phys Med, 2021, 83: 108-121. DOI: 10.1016/j.ejmp.2021.03.009.
[53]
LIN Y C, LIN C H, LU H Y, et al. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer[J]. Eur Radiol, 2020, 30(3): 1297-1305. DOI: 10.1007/s00330-019-06467-3.
[54]
LIU Y J, DUAN H, DONG D, et al. Development of a deep learning-based nomogram for predicting lymph node metastasis in cervical cancer: a multicenter study[J/OL]. Clin Transl Med, 2022, 12(7): e938 [2023-05-12]. https://pubmed.ncbi.nlm.nih.gov/35839331/. DOI: 10.1002/ctm2.938.
[55]
FANG Y T, WANG J Z, OU X M, et al. The impact of training sample size on deep learning-based organ auto-segmentation for head-and-neck patients[J/OL]. Phys Med Biol, 2021, 66(18) [2023-04-29]. https://pubmed.ncbi.nlm.nih.gov/34450599/. DOI: 10.1088/1361-6560/ac2206.

PREV Advances of MRI in evaluating the efficacy of neoadjuvant therapy for pancreatic cancer
NEXT Research progress of magnetic resonance diffusion kurtosis imaging in cervical cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn