Share:
Share this content in WeChat
X
Review
Progress in the application of artificial intelligence in transpathology
LIU Xi  HAN Kaitai  HUANG Mengyuan  LIU Shitou  GUO Qianjin 

Cite this article as: LIU X, HAN K T, HUANG M Y, et al. Progress in the application of artificial intelligence in transpathology[J]. Chin J Magn Reson Imaging, 2023, 14(10): 195-202. DOI:10.12015/issn.1674-8034.2023.10.035.


[Abstract] Transpathology is a new theory that is expected to revolutionize the future practice of pathology along with the molecular, digital and intelligent development of pathology. It primarily relies on cross-scale, non-invasive multi-modal molecular imaging technology, to visualize, characterize and measure the pathphysiology information of living organisms in temporal and spatial dimensions. Transpathology can not only solve the defects of invasive biopsy sampling and insufficient sampling in traditional pathology, but also comprehensively evaluate pathophysiological data and explore disease mechanism by combining morphological, structural, functional, metabolic and other multi-dimensional information. Transpathology reflects the fusion trend of molecular imaging and digitized pathology. Currently, transpathology is in a continuous phase of development and enhancement, in which artificial intelligence technology plays a pivotal role. The article begins by highlighting the significant role of transpathology in the evolution of pathology as a fusion of molecular imaging and digitalization. Subsequently, it reviewed the applications of artificial intelligence in the development of molecular imaging and digital pathology. Moreover, it provided examples to explore three potential artificial intelligence technologies that could drive transpathology practice. Finally, the challenges in the developmental trajectory of transpathology practice were summarized, along with a forward-looking perspective. This paper marks the inaugural comprehensive review delving into the potential of artificial intelligence technologies to propel transpathology development, with the aim of facilitating the translation of transpathology's foundational theories into clinical research and providing robust support for the realization of precision medicine.
[Keywords] transpathology;digital pathology;molecular imaging;magnetic resonance imaging;artificial intelligence;precision medicine

LIU Xi   HAN Kaitai   HUANG Mengyuan   LIU Shitou   GUO Qianjin*  

Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China

Corresponding author: GUO Q J, E-mail: guoqianjin@bipt.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 21673252).
Received  2023-04-22
Accepted  2023-09-14
DOI: 10.12015/issn.1674-8034.2023.10.035
Cite this article as: LIU X, HAN K T, HUANG M Y, et al. Progress in the application of artificial intelligence in transpathology[J]. Chin J Magn Reson Imaging, 2023, 14(10): 195-202. DOI:10.12015/issn.1674-8034.2023.10.035.

[1]
TIAN M, HE X X, JIN C T, et al. Transpathology: molecular imaging-based pathology[J]. Eur J Nucl Med Mol Imaging, 2021, 48(8): 2338-2350. DOI: 10.1007/s00259-021-05234-1.
[2]
BJERKLUND JOHANSEN T E, KULCHAVENYA E, LENTZ G M, et al. Fosfomycin trometamol for the prevention of infectious complications after prostate biopsy: a consensus statement by an international multidisciplinary group[J]. Eur Urol Focus, 2022, 8(5): 1483-1492. DOI: 10.1016/j.euf.2021.11.007.
[3]
DEBLIQUIS A, VOIRIN J, HARZALLAH I, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system[J]. Cytometry B Clin Cytom, 2018, 94(1): 182-188. DOI: 10.1002/cyto.b.21403.
[4]
JAMES M L, GAMBHIR S S. A molecular imaging primer: modalities, imaging agents, and applications[J]. Physiol Rev, 2012, 92(2): 897-965. DOI: 10.1152/physrev.00049.2010.
[5]
PHELPS M, SCHWAIGER M, CHITI A. Multi-scale imaging as an essential tool for precision medicine[J/OL]. Eur J Nucl Med Mol Imaging, 2021, 48(8): 2319 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/33885929/. DOI: 10.1007/s00259-021-05367-3.
[6]
RIVENSON Y, WANG H D, WEI Z S, et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning[J]. Nat Biomed Eng, 2019, 3(6): 466-477. DOI: 10.1038/s41551-019-0362-y.
[7]
BOKTOR M, ECCLESTONE B R, PEKAR V, et al. Virtual histological staining of label-free total absorption photoacoustic remote sensing (TA-PARS)[J/OL]. Sci Rep, 2022, 12(1): 10296 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/35717539/. DOI: 10.1038/s41598-022-14042-y.
[8]
LIU Z, CHENG T, DÜWEL S, et al. Proof of concept of a multimodal intravital molecular imaging system for tumour transpathology investigation[J]. Eur J Nucl Med Mol Imaging, 2022, 49(4): 1157-1165. DOI: 10.1007/s00259-021-05574-y.
[9]
WANG Z, LIU A N, LI X C, et al. Multifunctional nanoprobe for multi-mode imaging and diagnosis of metastatic prostate cancer[J/OL]. Talanta, 2023, 256: 124255 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/36652761/. DOI: 10.1016/j.talanta.2023.124255.
[10]
BHARGAVA A, MONTEAGUDO B, AGGARWAL M, et al. A novel vascular fiducials-based approach (VASFID) for co-registering multiscale imaging data for microcirculation systems biology[J/OL]. FASEB J, 2020, 34(S1): 1 [2023-04-21]. https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.2020.34.s1.06756?af=R. DOI: 10.1096/fasebj.2020.34.s1.06756.
[11]
CHEN R J, LU M Y, WILLIAMSON D F K, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning[J/OL]. Cancer Cell, 2022, 40(8): 865-878.e6 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/35944502/. DOI: 10.1016/j.ccell.2022.07.004.
[12]
MCCOLLOUGH C H, LENG S. Use of artificial intelligence in computed tomography dose optimisation[J]. Ann ICRP, 2020, 49(1_suppl): 113-125. DOI: 10.1177/0146645320940827.
[13]
SALTYBAEVA N, SCHMIDT B, WIMMER A, et al. Precise and automatic patient positioning in computed tomography: avatar modeling of the patient surface using a 3-dimensional camera[J]. Invest Radiol, 2018, 53(11): 641-646. DOI: 10.1097/RLI.0000000000000482.
[14]
LIN D J, WALTER S S, FRITZ J. Artificial intelligence-driven ultra-fast superresolution MRI: 10-fold accelerated musculoskeletal turbo spin echo MRI within reach[J]. Invest Radiol, 2023, 58(1): 28-42. DOI: 10.1097/RLI.0000000000000928.
[15]
ZHAO J W, JAIN M, HARRIS U G, et al. Deep learning-based denoising in high-speed portable reflectance confocal microscopy[J]. Lasers Surg Med, 2021, 53(6): 880-891. DOI: 10.1002/lsm.23410.
[16]
WANG Y R J, BARATTO L, HAWK K E, et al. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure[J]. Eur J Nucl Med Mol Imaging, 2021, 48(9): 2771-2781. DOI: 10.1007/s00259-021-05197-3.
[17]
VISVIKIS D, LAMBIN P, BEUSCHAU MAURIDSEN K, et al. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation[J]. Eur J Nucl Med Mol Imaging, 2022, 49(13): 4452-4463. DOI: 10.1007/s00259-022-05891-w.
[18]
ZHENG B W, CHEN W G, QIN G G. Implementation of artificial intelligence in functional and molecular imaging[J]. J Mol Imag, 2020, 43(1): 1-6. DOI: 10.12122/j.issn.1674-4500.2020.01.01.
[19]
CHOI H, KIM Y K, YOON E J, et al. Cognitive signature of brain FDG PET based on deep learning: domain transfer from Alzheimer's disease to Parkinson's disease[J]. Eur J Nucl Med Mol Imaging, 2020, 47(2): 403-412. DOI: 10.1007/s00259-019-04538-7.
[20]
CHOI C, RAISANEN J M, GANJI S K, et al. Prospective longitudinal analysis of 2-hydroxyglutarate magnetic resonance spectroscopy identifies broad clinical utility for the management of patients with IDH-mutant glioma[J]. J Clin Oncol, 2016, 34(33): 4030-4039. DOI: 10.1200/JCO.2016.67.1222.
[21]
WEI Z H, LIU X, YAN R Q, et al. Pixel-level multimodal fusion deep networks for predicting subcellular organelle localization from label-free live-cell imaging[J/OL]. Front Genet, 2022, 13: 1002327 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/36386823/. DOI: 10.3389/fgene.2022.1002327.
[22]
WEI Z H, LIU W, YU W Y, et al. Multiple parallel fusion network for predicting protein subcellular localization from stimulated Raman scattering (SRS) microscopy images in living cells[J/OL]. Int J Mol Sci, 2022, 23(18): 10827 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/36142736/. DOI: 10.3390/ijms231810827.
[23]
WU Q, WANG Z, NING N, et al. Differential diagnostic value of IVIM combining with dynamic enhanced MRI in non-mass enhancement adenosis and breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(2): 37-43, 49. DOI: 10.12015/issn.1674-8034.2023.02.007.
[24]
CHEN R H, TAN Y. Research advances of radiomics in prognosis prediction of lower-grade gliomas[J]. Chin J Magn Reson Imag, 2023, 14(3): 159-164. DOI: 10.12015/issn.1674-8034.2023.03.029.
[25]
ZHAO N N, ZHU Y, TANG X M, et al. Prediction of axillary lymph node metastasis in breast cancer based on intra-tumoral and peri-tumoral MRI radiomics nomogram[J]. Chin J Magn Reson Imag, 2023, 14(3): 81-87, 94. DOI: 10.12015/issn.1674-8034.2023.03.014.
[26]
LI J, HU G C, JIANG X Y, et al. Research progress of radiomics and deep learning in predicting microvascular invasion of hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(3): 184-188. DOI: 10.12015/issn.1674-8034.2023.03.034.
[27]
CUI Y Q, HUANG G, WANG L L, et al. Clinical-radiomic analysis of multi-parametric magnetic resonance imaging predicts lymphovascular space invasion and outcomes in cervical cancer[J]. Chin J Magn Reson Imag, 2023, 14(2): 73-82. DOI: 10.12015/issn.1674-8034.2023.02.013.
[28]
FENG Y, LAN X L, ZHANG Y X. Progresses in molecular imaging for early diagnosis and molecular typing of breast cancer[J]. Chin J Med Imag Technol, 2022, 38(7): 1086-1089. DOI: 10.13929/j.issn.1003-3289.2022.07.028.
[29]
BECKER L, JANSSEN N, LAYLAND S L, et al. Raman imaging and fluorescence lifetime imaging microscopy for diagnosis of cancer state and metabolic monitoring[J/OL]. Cancers, 2021, 13(22): 5682 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/34830837/. DOI: 10.3390/cancers13225682.
[30]
LIU H H, HAN Y B, WANG T T, et al. Targeting microglia for therapy of Parkinson's disease by using biomimetic ultrasmall nanoparticles[J]. J Am Chem Soc, 2020, 142(52): 21730-21742. DOI: 10.1021/jacs.0c09390.
[31]
HESS A, DERLIN T, KOENIG T, et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4[J]. Eur Heart J, 2020, 41(37): 3564-3575. DOI: 10.1093/eurheartj/ehaa598.
[32]
LI Z L, ZHAO P, ZHANG Y J, et al. Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model[J]. Theranostics, 2021, 11(6): 2953-2965. DOI: 10.7150/thno.49874.
[33]
SANDU N, ROSEMANN T, SCHALLER B. Molecular imaging and tracking stem cells in neurosciences[J/OL]. Methods Mol Biol, 2020, 2150: 1-9 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/31020636/. DOI: 10.1007/7651_2019_218.
[34]
LIU G H, ZHANG B W, QIAN G, et al. Bioimage-based prediction of protein subcellular location in human tissue with ensemble features and deep networks[J]. IEEE/ACM Trans Comput Biol Bioinform, 2020, 17(6): 1966-1980. DOI: 10.1109/TCBB.2019.2917429.
[35]
ROWE S P, POMPER M G. Molecular imaging in oncology: current impact and future directions[J]. CA Cancer J Clin, 2022, 72(4): 333-352. DOI: 10.3322/caac.21713.
[36]
PANTANOWITZ L, VALENSTEIN P N, EVANS A J, et al. Review of the current state of whole slide imaging in pathology[J/OL]. J Pathol Inform, 2011, 2: 36 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/21886892/. DOI: 10.4103/2153-3539.83746.
[37]
HANNA M G, PARWANI A, SIRINTRAPUN S J. Whole slide imaging: technology and applications[J]. Adv Anat Pathol, 2020, 27(4): 251-259. DOI: 10.1097/PAP.0000000000000273.
[38]
KUMAR N, GUPTA R, GUPTA S. Whole slide imaging (WSI) in pathology: current perspectives and future directions[J]. J Digit Imaging, 2020, 33(4): 1034-1040. DOI: 10.1007/s10278-020-00351-z.
[39]
NIAZI M K K, PARWANI A V, GURCAN M N. Digital pathology and artificial intelligence[J/OL]. Lancet Oncol, 2019, 20(5): e253-e261 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/31044723/. DOI: 10.1016/S1470-2045(19)30154-8.
[40]
KOZLOWSKI C, JEET S, BEYER J, et al. An entirely automated method to score DSS-induced colitis in mice by digital image analysis of pathology slides[J]. Dis Model Mech, 2013, 6(3): 855-865. DOI: 10.1242/dmm.011759.
[41]
EHTESHAMI BEJNORDI B, BALKENHOL M, LITJENS G, et al. Automated detection of DCIS in whole-slide H&E stained breast histopathology images[J]. IEEE Trans Med Imaging, 2016, 35(9): 2141-2150. DOI: 10.1109/TMI.2016.2550620.
[42]
VETA M, KORNEGOOR R, HUISMAN A, et al. Prognostic value of automatically extracted nuclear morphometric features in whole slide images of male breast cancer[J]. Mod Pathol, 2012, 25(12): 1559-1565. DOI: 10.1038/modpathol.2012.126.
[43]
LEWIS J S, ALI S, LUO J Q, et al. A quantitative histomorphometric classifier (QuHbIC) identifies aggressive versus indolent p16-positive oropharyngeal squamous cell carcinoma[J]. Am J Surg Pathol, 2014, 38(1): 128-137. DOI: 10.1097/PAS.0000000000000086.
[44]
TIAN D W, WANG X C, ZHANG H, et al. Progress of artificial intelligence-based pathology in tumor diagnosis and treatment[J]. Chin J Magn Reson Imag, 2021, 12(2): 117-120. DOI: 10.12015/issn.1674-8034.2021.02.029.
[45]
COUDRAY N, OCAMPO P S, SAKELLAROPOULOS T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nat Med, 2018, 24(10): 1559-1567. DOI: 10.1038/s41591-018-0177-5.
[46]
ZHANG X H, LI C W, ZHANG Y, et al. Multi-target panoramic digital pathology: from principle to application[J]. Chin Opt, 2022, 15(6): 1258-1274. DOI: 10.37188/CO.2022-0091.
[47]
TANG K D, KENNY L, PERRY C, et al. The overexpression of salivary cytokeratins as potential diagnostic biomarkers in head and neck squamous cell carcinomas[J]. Oncotarget, 2017, 8(42): 72272-72280. DOI: 10.18632/oncotarget.19731.
[48]
WANG J, SUN J W, LIU L, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy[J]. Nat Med, 2019, 25(4): 656-666. DOI: 10.1038/s41591-019-0374-x.
[49]
HUDA M N, NAFIUJJAMAN M, DEAGUERO I G, et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: progress in clinical and preclinical applications[J]. ACS Biomater Sci Eng, 2021, 7(6): 2106-2149. DOI: 10.1021/acsbiomaterials.1c00217.
[50]
FARARJEH A S, KADDUMI E, KHADER A AL, et al. The diagnostic and prognostic significance of EFEMP1 in breast cancer: an immunohistochemistry study[J]. Int J Surg Pathol, 2023, 31(6): 1057-1066. DOI: 10.1177/10668969221126122.
[51]
DHAINAUT M, ROSE S A, AKTURK G, et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment[J/OL]. Cell, 2022, 185(7): 1223-1239.e20 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/35644799/. DOI: 10.1016/j.cell.2022.02.015.
[52]
OBRADOVIC A, CHOWDHURY N, HAAKE S M, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages[J]. Cell, 2021, 184(11): 2988-3005.e16. DOI: 10.1016/j.cell.2021.04.038.
[53]
BERRY S, GIRALDO N A, GREEN B F, et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade[J/OL]. Science, 2021, 372(6547): eaba2609 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/34112666/. DOI: 10.1126/science.aba2609.
[54]
BIZOT A, KARIMI M, RASSY E, et al. Multicenter evaluation of breast cancer patients' satisfaction and experience with oncology telemedicine visits during the COVID-19 pandemic[J]. Br J Cancer, 2021, 125(11): 1486-1493. DOI: 10.1038/s41416-021-01555-y.
[55]
BAI B J, YANG X L, LI Y Z, et al. Deep learning-enabled virtual histological staining of biological samples[J/OL]. Light Sci Appl, 2023, 12(1): 57 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/36864032/. DOI: 10.1038/s41377-023-01104-7.
[56]
MENG X Y, LI X, WANG X. A computationally virtual histological staining method to ovarian cancer tissue by deep generative adversarial networks[J/OL]. Comput Math Methods Med, 2021, 2021: 4244157 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/34306174/. DOI: 10.1155/2021/4244157.
[57]
ZHANG Y J, DE HAAN K, RIVENSON Y, et al. Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue[J/OL]. Light Sci Appl, 2020, 9: 78 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/32411363/. DOI: 10.1038/s41377-020-0315-y.
[58]
CAMPBELL J M, MAHBUB S B, HABIBALAHI A, et al. Clinical applications of non-invasive multi and hyperspectral imaging of cell and tissue autofluorescence beyond oncology[J/OL]. J Biophotonics, 2023, 16(4): e202200264 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/36602432/. DOI: 10.1002/jbio.202200264.
[59]
BAI B J, WANG H D, LI Y Z, et al. Label-free virtual HER2 immunohistochemical staining of breast tissue using deep learning[J/OL]. BME Frontiers, 2022, 9786242 [2023-04-21]. https://spj.science.org/doi/10.34133/2022/9786242. DOI: 10.34133/2022/9786242.
[60]
DE HAAN K, ZHANG Y J, ZUCKERMAN J E, et al. Deep learning-based transformation of H&E stained tissues into special stains[J/OL]. Nat Commun, 2021, 12(1): 4884 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/34385460/. DOI: 10.1038/s41467-021-25221-2.
[61]
XIE W S, REDER N P, KOYUNCU C, et al. Prostate cancer risk stratification via nondestructive 3D pathology with deep learning-assisted gland analysis[J]. Cancer Res, 2022, 82(2): 334-345. DOI: 10.1158/0008-5472.CAN-21-2843.
[62]
ZHANG G H, NING B, HUI H, et al. Image-to-images translation for multiple virtual histological staining of unlabeled human carotid atherosclerotic tissue[J]. Mol Imaging Biol, 2022, 24(1): 31-41. DOI: 10.1007/s11307-021-01641-w.
[63]
GU Y, VYAS K, SHEN M L, et al. Deep graph-based multimodal feature embedding for endomicroscopy image retrieval[J]. IEEE Trans Neural Netw Learn Syst, 2021, 32(2): 481-492. DOI: 10.1109/TNNLS.2020.2980129.
[64]
KARPATI S, HUBERT V, HRISTOVSKA I, et al. Hybrid multimodal contrast agent for multiscale in vivo investigation of neuroinflammation[J]. Nanoscale, 2021, 13(6): 3767-3781. DOI: 10.1039/d0nr07026b.
[65]
JAIN R K, MUNN L L, FUKUMURA D. Transparent window models and intravital microscopy: imaging gene expression, physiological function and therapeutic effects in tumors[M]// Tumor Models in Cancer Research. Totowa, NJ: Humana Press, 2011: 641-679. DOI: 10.1007/978-1-59259-100-8_34
[66]
PURI T, CHALKIDOU A, HENLEY-SMITH R, et al. A method for accurate spatial registration of PET images and histopathology slices[J/OL]. EJNMMI Res, 2015, 5(1): 64 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/26576995/. DOI: 10.1186/s13550-015-0138-7.
[67]
KIJOWSKI R, FRITZ J. Emerging technology in musculoskeletal MRI and CT[J]. Radiology, 2023, 306(1): 6-19. DOI: 10.1148/radiol.220634.
[68]
HABIBZADEH M A, AY M R, ASL A R, et al. Impact of miscentering on patient dose and image noise in X-ray CT imaging: phantom and clinical studies[J]. Phys Med, 2012, 28(3): 191-199. DOI: 10.1016/j.ejmp.2011.06.002.
[69]
EULER A, SALTYBAEVA N, ALKADHI H. How patient off-centering impacts organ dose and image noise in pediatric head and thoracoabdominal CT[J]. Eur Radiol, 2019, 29(12): 6790-6793. DOI: 10.1007/s00330-019-06330-5.
[70]
BOOIJ R, VAN STRATEN M, WIMMER A, et al. Automated patient positioning in CT using a 3D camera for body contour detection: accuracy in pediatric patients[J]. Eur Radiol, 2021, 31(1): 131-138. DOI: 10.1007/s00330-020-07097-w.
[71]
WANG H L, CHEN X F, HU Y C, et al. Application of artificial intelligence automatic positioning technology in chest CT imaging of patients with different body types[J]. Med J Wuhan Univ, 2023, 44(2): 227-233. DOI: 10.14188/j.1671-8852.2022.0964.
[72]
GANG Y D, CHEN X F, WANG H L, et al. Accurate and efficient pulmonary CT imaging workflow for COVID-19 patients by the combination of intelligent guided robot and automatic positioning technology[J]. Intell Med, 2021, 1(1): 3-9. DOI: 10.1016/j.imed.2021.04.005.
[73]
YANG J S, LV Z W. Construction and implementation of regional high-level PET alliance based on international consensus[J]. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3330-3331. DOI: 10.1007/s00259-022-05796-8.
[74]
CUTILLO C M, SHARMA K R, FOSCHINI L, et al. Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency[J/OL]. NPJ Digit Med, 2020, 3: 47 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/32258429/. DOI: 10.1038/s41746-020-0254-2.

PREV Research progress of magnetic resonance diffusion kurtosis imaging in cervical cancer
NEXT A resting-state fMRI study of spontaneous brain activity in persons dependent on both nicotine and alcohol
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn