Share:
Share this content in WeChat
X
Clinical Article
A resting-state fMRI study of spontaneous brain activity in persons dependent on both nicotine and alcohol
WANG Lingfei  ZHANG Yong  NIU Xiaoyu  GAO Xinyu  ZHANG Mengzhe  WANG Weijian  CHENG Jingliang 

Cite this article as: WANG L F, ZHANG Y, NIU X Y, et al. A resting-state fMRI study of spontaneous brain activity in persons dependent on both nicotine and alcohol[J]. Chin J Magn Reson Imaging, 2023, 14(11): 1-5, 24. DOI:10.12015/issn.1674-8034.2023.11.001.


[Abstract] Objective To investigate the effects of smoking and drinking on brain spontaneous activity and the neurobiological mechanism of comorbidity between smoking and drinking.Materials and Methods Based on the amplitude of low-frequency fluctuation (ALFF) method, a 2×2 factorial design was employed to investigate the effects of alcohol on ALFF in individuals categorized into four groups: alcohol-consuming smokers (n=35) and alcohol-consuming non-smokers (n=27), as well as non-alcohol-consuming smokers (n=21) and non-alcohol-consuming non-smokers (n=25). Resting-state functional magnetic resonance imaging (fMRI) scans were performed to acquire brain data, and ALFF values were calculated for each group. Subsequently, an analysis of variance (ANOVA) was conducted to assess the differences in ALFF values among the four groups. To further explore specific group differences, post hoc tests (Bonferroni correction) were conducted based on the ANOVA results. The study aims to gain insights into the impact of alcohol consumption on ALFF in the context of nicotine dependence, contributing to a deeper understanding of neural activity and its modulation in addiction.Results Compared with healthy controls, the smoking group had higher ALFF values in the bilateral precuneus and right cuneus (t=3.212, P=0.001), while the drinking group had higher ALFF values in the left cerebellar hemisphere (t=3.422, P=0.001), with P<0.005 for voxel levels and P<0.05 for mass levels, based on GRF correction. Smoking and alcohol consumption jointly affected brain activity in the left posterior cerebellar lobe, but with opposite effects. ALFF values in the left posterior cerebellar lobe were negatively correlated with smoking age, pack-years and drinking dependence scale scores (n=35; r=-0.367, P=0.025; r=-0.267, P=0.033; r=-0.293, P=0.026).Conclusions Smoking and alcohol consumption both affect spontaneous brain activity, and their interaction occurs in the left posterior cerebellar lobe. Smoking and drinking produce a novel antagonistic interaction. This suggests that we need to control for alcohol consumption as a variable when studying spontaneous brain activity in smokers.
[Keywords] low frequency oscillation amplitude;nicotine addiction;alcohol consumption;interaction effect;resting-state functional magnetic resonance imaging

WANG Lingfei   ZHANG Yong*   NIU Xiaoyu   GAO Xinyu   ZHANG Mengzhe   WANG Weijian   CHENG Jingliang  

Department of Magnetic Resonance, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China

Corresponding author: ZHANG Y, E-mail: zzuzhangyong2013@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Key Research and Development and Promotion (Science and Technology) Project of Henan Province (No. 212102310712).
Received  2023-05-05
Accepted  2023-10-31
DOI: 10.12015/issn.1674-8034.2023.11.001
Cite this article as: WANG L F, ZHANG Y, NIU X Y, et al. A resting-state fMRI study of spontaneous brain activity in persons dependent on both nicotine and alcohol[J]. Chin J Magn Reson Imaging, 2023, 14(11): 1-5, 24. DOI:10.12015/issn.1674-8034.2023.11.001.

[1]
SILVA D R, MUÑOZ-TORRICO M, DUARTE R, et al. Risk factors for tuberculosis: diabetes, smoking, alcohol use, and the use of other drugs[J]. J Bras Pneumol, 2018, 44(2): 145-152. DOI: 10.1590/s1806-37562017000000443.
[2]
JOHN U, HANKE M. Tobacco smoking- and alcohol drinking-attributable cancer mortality in Germany[J]. Eur J Cancer Prev, 2002, 11(1): 11-17. DOI: 10.1097/00008469-200202000-00003.
[3]
KEYES K M, RUTHERFORD C, SMITH G S. Alcohol-induced death in the USA from 1999 to 2020: a comparison of age-period-cohort methods[J]. Curr Epidemiol Rep, 2022, 9(3): 161-174. DOI: 10.1007/s40471-022-00300-0.
[4]
YANG J J, YU D X, WEN W Q, et al. Tobacco smoking and mortality in Asia: a pooled meta-analysis[J/OL]. JAMA Netw Open, 2019, 2(3): e191474 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/30924901/. DOI: 10.1001/jamanetworkopen.2019.1474.
[5]
ASMA S, SONG Y, COHEN J, et al. CDC Grand Rounds: global tobacco control[J]. MMWR Morb Mortal Wkly Rep, 2014, 63(13): 277-280.
[6]
YANG Z G, ZHANG Y, CHENG J L, et al. Meta-analysis of brain gray matter changes in chronic smokers[J/OL]. Eur J Radiol, 2020, 132: 109300 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/33010686/. DOI: 10.1016/j.ejrad.2020.109300.
[7]
GOLDFARBMUREN K C, JACKSON N D, SAJUTHI S P, et al. Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium[J/OL]. Nat Commun, 2020, 11(1): 2485 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/32427931/. DOI: 10.1038/s41467-020-16239-z.
[8]
ADAMS S. Psychopharmacology of tobacco and alcohol comorbidity: a review of current evidence[J]. Curr Addict Rep, 2017, 4(1): 25-34. DOI: 10.1007/s40429-017-0129-z.
[9]
ZHANG Y, LI Y L, CHENG J L, et al. Evaluation of default mode network in chronic smokers at resting state[J]. J Clin Radiol, 2018, 37(6): 900-903. DOI: 10.13437/j.cnki.jcr.2018.06.002.
[10]
OMOLE T, MCNEEL T, CHOI K. Heterogeneity in past-year smoking, current tobacco use, and smoking cessation behaviors among light and/or non-daily smokers[J/OL]. Tob Induc Dis, 2020, 18: 74 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/32994761/. DOI: 10.18332/tid/125724.
[11]
YANG S Q, MENG Y, LI J, et al. Temporal dynamic changes of intrinsic brain activity in schizophrenia with cigarette smoking[J/OL]. Schizophr Res, 2019, 210: 66-72 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/31239219/. DOI: 10.1016/j.schres.2019.06.012.
[12]
GHAHREMANI D G, POCHON J B, PEREZ DIAZ M, et al. Functional connectivity of the anterior insula during withdrawal from cigarette smoking[J]. Neuropsychopharmacology, 2021, 46(12): 2083-2089. DOI: 10.1038/s41386-021-01036-z.
[13]
KIM J I, LEE J D, HWANG H J, et al. Altered subcallosal and posterior cingulate cortex-based functional connectivity during smoking cue and mental simulation processing in smokers[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 97: 109772 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/31647945/. DOI: 10.1016/j.pnpbp.2019.109772.
[14]
CHEN R R, WANG S L, FAN Y J, et al. Acute Tai Chi Chuan exercise enhances sustained attention and elicits increased cuneus/precuneus activation in young adults[J]. Cereb Cortex, 2023, 33(6): 2969-2981. DOI: 10.1093/cercor/bhac254.
[15]
HU S E, ZHANG S, CHAO H H, et al. Association of drinking problems and duration of alcohol use to inhibitory control in nondependent young adult social drinkers[J]. Alcohol Clin Exp Res, 2016, 40(2): 319-328. DOI: 10.1111/acer.12964.
[16]
ZHANG M Z, HUANG H Y, GAO X Y, et al. Altered inter- and intrahemispheric functional connectivity dynamics in long-term smokers[J]. Chin J Psychiatry, 2022, 55(2): 98-105. DOI: 10.3760/cma.j.cn113661-20210517-00163.
[17]
SHI Z H, WANG A L, ARONOWITZ C A, et al. Connectivity between visual and auditory cortices mediates the influence of argument strength on the effectiveness of smoking-cessation videos among smokers low in sensation seeking[J/OL]. Psychol Res Behav Manag, 2019, 12: 531-542 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/31410074/. DOI: 10.2147/PRBM.S183394.
[18]
WEN M M, YANG Z G, WEI Y R, et al. More than just statics: temporal dynamic changes of intrinsic brain activity in cigarette smoking[J/OL]. Addict Biol, 2021, 26(6): e13050 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/34085358/. DOI: 10.1111/adb.13050.
[19]
SHEN Z J, HUANG P Y, WANG C, et al. Cerebellar gray matter reductions associate with decreased functional connectivity in nicotine-dependent individuals[J]. Nicotine Tob Res, 2018, 20(4): 440-447. DOI: 10.1093/ntr/ntx168.
[20]
WANG C, HUANG P Y, SHEN Z J, et al. Increased striatal functional connectivity is associated with improved smoking cessation outcomes: a preliminary study[J/OL]. Addict Biol, 2021, 26(2): e12919 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/32436626/. DOI: 10.1111/adb.12919.
[21]
JANSEN J M, VAN HOLST R J, VAN DEN BRINK W, et al. Brain function during cognitive flexibility and white matter integrity in alcohol-dependent patients, problematic drinkers and healthy controls[J]. Addict Biol, 2015, 20(5): 979-989. DOI: 10.1111/adb.12199.
[22]
GÓMEZ M J C, BEAULIEU C, MCMORRIS C A, et al. Frontoparietal and temporal white matter diffusion MRI in children and youth with prenatal alcohol exposure[J]. Alcohol Clin Exp Res, 2022, 46(10): 1808-1818. DOI: 10.1111/acer.14929.
[23]
EROL Ç. Carotid stents, stroke and DW-MRI, HOCM and alcohol ablation and more…[J/OL]. Anatol J Cardiol, 2022, 26(4): 248 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/35435834/. DOI: 10.5152/AnatolJCardiol.2022.4.
[24]
ABULSEOUD O A, ROSS T J, NAM H W, et al. Short-term nicotine deprivation alters dorsal anterior cingulate glutamate concentration and concomitant cingulate-cortical functional connectivity[J]. Neuropsychopharmacology, 2020, 45(11): 1920-1930. DOI: 10.1038/s41386-020-0741-9.
[25]
SADEGHI-ARDEKANI K, HAGHIGHI M, ZARRIN R. Effects of omega-3 fatty acid supplementation on cigarette craving and oxidative stress index in heavy-smoker males: a double-blind, randomized, placebo-controlled clinical trial[J]. J Psychopharmacol, 2018, 32(9): 995-1002. DOI: 10.1177/0269881118788806.
[26]
GILMAN J M, RAMCHANDANI V A, DAVIS M B, et al. Why we like to drink: a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol[J]. J Neurosci, 2008, 28(18): 4583-4591. DOI: 10.1523/JNEUROSCI.0086-08.2008.
[27]
VAN OVERWALLE F, PU M, MA Q Y, et al. The involvement of the posterior cerebellum in reconstructing and predicting social action sequences[J]. Cerebellum, 2022, 21(5): 733-741. DOI: 10.1007/s12311-021-01333-9.
[28]
YUAN Q M, LI H H, DU B Q, et al. The cerebellum and cognition: further evidence for its role in language control[J]. Cereb Cortex, 2022, 33(1): 35-49. DOI: 10.1093/cercor/bhac051.
[29]
TOMASI D, VOLKOW N D. Association between brain activation and functional connectivity[J]. Cereb Cortex, 2019, 29(5): 1984-1996. DOI: 10.1093/cercor/bhy077.
[30]
CHENG B C, ROBERTS N, ZHOU Y S, et al. Social support mediates the influence of cerebellum functional connectivity strength on postpartum depression and postpartum depression with anxiety[J/OL]. Transl Psychiatry, 2022, 12(1): 54 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/35136017/. DOI: 10.1038/s41398-022-01781-9.
[31]
LAJTHA A, SERSHEN H. Nicotine: alcohol reward interactions[J]. Neurochem Res, 2010, 35(8): 1248-1258. DOI: 10.1007/s11064-010-0181-8.
[32]
TOMASI D, VOLKOW N D. Functional connectivity density mapping[J]. Proc Natl Acad Sci USA, 2010, 107(21): 9885-9890. DOI: 10.1073/pnas.1001414107.
[33]
WILCOCKSON T D W, POTHOS E M, OSBORNE A M, et al. Top-down and bottom-up attentional biases for smoking-related stimuli: comparing dependent and non-dependent smokers[J/OL]. Addict Behav, 2021, 118: 106886 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/33714035/. DOI: 10.1016/j.addbeh.2021.106886.
[34]
BUSCHSCHULTE A, BOEHLER C N, STRUMPF H, et al. Reward- and attention-related biasing of sensory selection in visual cortex[J]. J Cogn Neurosci, 2014, 26(5): 1049-1065. DOI: 10.1162/jocn_a_00539.
[35]
HAN S Q, WANG X, HE Z L, et al. Decreased static and increased dynamic global signal topography in major depressive disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 94: 109665 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/31202912/. DOI: 10.1016/j.pnpbp.2019.109665.
[36]
MARKS K R, ALCORN J L, STOOPS W W, et al. Cigarette cue attentional bias in cocaine-smoking and non-cocaine-using cigarette smokers[J]. Nicotine Tob Res, 2016, 18(9): 1915-1919. DOI: 10.1093/ntr/ntw026.
[37]
QIU Z G, WANG J J. A voxel-wise meta-analysis of task-based functional MRI studies on impaired gain and loss processing in adults with addiction[J/OL]. J Psychiatry Neurosci, 2021, 46(1): E128-E146 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/33185525/. DOI: 10.1503/jpn.200047.
[38]
HAVERMANS A, VAN SCHAYCK O C P, VUURMAN E F P M, et al. Nicotine deprivation elevates neural representation of smoking-related cues in object-sensitive visual cortex: a proof of concept study[J]. Psychopharmacology, 2017, 234(16): 2375-2384. DOI: 10.1007/s00213-017-4628-3.
[39]
LIN F C, HAN X, WANG Y, et al. Sex-specific effects of cigarette smoking on caudate and amygdala volume and resting-state functional connectivity[J]. Brain Imaging Behav, 2021, 15(1): 1-13. DOI: 10.1007/s11682-019-00227-z.
[40]
HAWKS Z W, TODOROV A, MARRUS N, et al. A prospective evaluation of infant cerebellar-cerebral functional connectivity in relation to behavioral development in autism spectrum disorder[J]. Biol Psychiatry Glob Open Sci, 2023, 3(1): 149-161. DOI: 10.1016/j.bpsgos.2021.12.004.
[41]
QIU X X, HAN X, WANG Y, et al. Interaction between smoking and Internet gaming disorder on spontaneous brain activity[J/OL]. Front Psychiatry, 2020, 11: 586114 [2022-05-02]. https://pubmed.ncbi.nlm.nih.gov/33343420/. DOI: 10.3389/fpsyt.2020.586114.
[42]
PRISCIANDARO J J, SCHACHT J P, PRESCOT A P, et al. Associations between recent heavy drinking and dorsal anterior cingulate N-acetylaspartate and glutamate concentrations in non-treatment-seeking individuals with alcohol dependence[J]. Alcohol Clin Exp Res, 2016, 40(3): 491-496. DOI: 10.1111/acer.12977.

PREV Progress in the application of artificial intelligence in transpathology
NEXT Application of surface-based morphometry and voxel-based morphometry in "MRI negative" frontal lobe epilepsy of children and adolescents
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn