Share:
Share this content in WeChat
X
Clinical Article
Application of compressed sensing combined with EPI-ASL technology in ischemic stroke
SUN Meirong  SU Chunqiu  BIAN Hongli  ZHAO Xiance  JIN Dongsheng  LU Shanshan 

Cite this article as: SUN M R, SU C Q, BIAN H L, et al. Application of compressed sensing combined with EPI-ASL technology in ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(11): 18-24. DOI:10.12015/issn.1674-8034.2023.11.004.


[Abstract] Objective To investigate the clinical utility of compressed sensing (CS) combined with echo-planar-imaging (EPI) arterial spin labeling (EPIC-ASL) in improving cerebral perfusion imaging, by compared with traditional EPI-ASL images.Materials and Methods We prospectively enrolled 26 patients with acute cerebral infarction (ACI) and 32 healthy volunteers. They were scanned both EPI-ASL and EPIC-ASL program. Two radiologists independently evaluated the imaging quality of the white matter, gray matter, basal ganglia, brainstem and cerebellum acquired by EPIC-ASL and EPI-ASL, respectively. Then, the signal to noise ratio (SNR) and gray/white matter contrast noise ratio (CNR) were caculated in each anatomical region same as above. For patients with ACI, the boundary of infarction, SNR, CNR infarction/white matter, and relative blood flow (rCBF) were analyzed. The paired-sample t-test, Wilcoxon rank sum test, and Mann-Whitney U test were used in appropriate to compare the image quality between the two groups.Results EPIC-ASL performed better than EPI-ASL for displaying white matter, gray matter, basal ganglia, brainstem and cerebellum, (all P<0.001). In each anatomical location, the SNR and CNRgray matter/white matter of EPIC-ASL were all considerably higher than those of EPI-ASL (all P<0.001). Compared with EPI-ASL, EPIC-ASL could depict the boundaries of infarct more accurately (P<0.001) and showed higher SNR and CNRinfarction/white Matter values (P<0.001 and P<0.032, respectively). There was no significant difference in the evaluation of rCBF between the two techniques (P=0.851).Conclusions Within the same scanning time, EPIC-ASL can improve the in-plane resolution and image quality compared with traditional EPI-ASL. EPIC-ASL shows better performance for the visualization of infarction, and can accurately assess cerebral perfusion, which will be benefit for patients with ACI.
[Keywords] ischemic stroke;cerebral perfusion;compressed sensing;arterial spin labeling;magnetic resonance imaging

SUN Meirong1, 2   SU Chunqiu1   BIAN Hongli1   ZHAO Xiance3   JIN Dongsheng2   LU Shanshan1*  

1 Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

2 Department of Radiology, Jiangsu Province Offical Hospital, Nanjing 210024, China

3 Philips (China) Investment Company, Shanghai 200042, China

Corresponding author: LU S S, E-mail: lushan1118@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82171907).
Received  2023-05-27
Accepted  2023-10-27
DOI: 10.12015/issn.1674-8034.2023.11.004
Cite this article as: SUN M R, SU C Q, BIAN H L, et al. Application of compressed sensing combined with EPI-ASL technology in ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(11): 18-24. DOI:10.12015/issn.1674-8034.2023.11.004.

[1]
ZHOU M G, WANG H D, ZENG X Y, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158. DOI: 10.1016/S0140-6736(19)30427-1.
[2]
ARACKI-TRENKIC A, LAW-YE B, RADOVANOVIC Z, et al. ASL perfusion in acute ischemic stroke: the value of CBF in outcome prediction[J/OL]. Clin Neurol Neurosurg, 2020, 194: 105908 [2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/32454413/. DOI: 10.1016/j.clineuro.2020.105908.
[3]
THOMALLA G, GERLOFF C. Acute imaging for evidence-based treatment of ischemic stroke[J]. Curr Opin Neurol, 2019, 32(4): 521-529. DOI: 10.1097/WCO.0000000000000716.
[4]
SHUKLA R, KIRTI R, BHUSHAN D, et al. Clinical utility of MRI in acute stroke beyond reperfusion therapy[J]. J Family Med Prim Care, 2022, 11(6): 2933-2937. DOI: 10.4103/jfmpc.jfmpc_2136_21.
[5]
REGENHARDT R W, POTTER C A, HUANG S S, et al. Advanced imaging for acute stroke treatment selection: CT, CTA, CT perfusion, and MR imaging[J]. Radiol Clin North Am, 2023, 61(3): 445-456. DOI: 10.1016/j.rcl.2023.01.003.
[6]
IMRAN R, MOHAMED G A, NAHAB F. Acute reperfusion therapies for acute ischemic stroke[J/OL]. J Clin Med, 2021, 10(16): 3677 [2023-05-26]. https://www.mdpi.com/2077-0383/10/16/3677. DOI: 10.3390/jcm10163677.
[7]
WIDIMSKY P, SNYDER K, SULZENKO J, et al. Acute ischaemic stroke: recent advances in reperfusion treatment[J]. Eur Heart J, 2023, 44(14): 1205-1215. DOI: 10.1093/eurheartj/ehac684.
[8]
GRØAN M, OSPEL J, AJMI S, et al. Time-based decision making for reperfusion in acute ischemic stroke[J/OL]. Front Neurol, 2021, 12: 728012 [2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/34790159/. DOI: 10.3389/fneur.2021.728012.
[9]
HERNANDEZ-GARCIA L, LAHIRI A, SCHOLLENBERGER J. Recent progress in ASL[J/OL]. NeuroImage, 2019, 187: 3-16 [2023-05-26]. https://www.sciencedirect.com/science/article/abs/pii/S1053811917311199?via%3Dihub. DOI: 10.1016/j.neuroimage.2017.12.095.
[10]
SOURBRON S. Technical aspects of MR perfusion[J]. Eur J Radiol, 2010, 76(3): 304-313. DOI: 10.1016/j.ejrad.2010.02.017.
[11]
GÖTTLER J, KACZMARZ S, KALLMAYER M, et al. Flow-metabolism uncoupling in patients with asymptomatic unilateral carotid artery stenosis assessed by multi-modal magnetic resonance imaging[J]. J Cereb Blood Flow Metab, 2019, 39(11): 2132-2143. DOI: 10.1177/0271678X18783369.
[12]
BAMBACH S, SMITH M, MORRIS P P, et al. Arterial spin labeling applications in pediatric and adult neurologic disorders[J]. J Magn Reson Imaging, 2022, 55(3): 698-719. DOI: 10.1002/jmri.27438.
[13]
ALSOP D C, DETRE J A, GOLAY X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.
[14]
ZHANG M N, SHI Q, YUE Y, et al. Evaluation of T2-FLAIR combined with ASL on the collateral circulation of acute ischemic stroke[J]. Neurol Sci, 2022, 43(8): 4891-4900. DOI: 10.1007/s10072-022-06042-7.
[15]
WANG M X, MA Y M, CHEN F, et al. Acceleration of pCASL-based cerebral 4D MR angiography using compressed SENSE: a comparison with SENSE[J/OL]. Front Neurol, 2022, 13: 796271 [2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/35386411/. DOI: 10.3389/fneur.2022.796271.
[16]
LONGÈRE B, CHAVENT M H, COISNE A, et al. Single breath-hold compressed sensing real-time cine imaging to assess left ventricular motion in myocardial infarction[J]. Diagn Interv Imaging, 2021, 102(5): 297-303. DOI: 10.1016/j.diii.2020.11.012.
[17]
KIM H G, OH S W, HAN D, et al. Accelerated 3D T2-weighted images using compressed sensing for pediatric brain imaging[J]. Neuroradiology, 2022, 64(12): 2399-2407. DOI: 10.1007/s00234-022-03028-2.
[18]
JIANG Y, WANG X Y, ZHU L N, et al. Compressed-sensing accelerated magnetic resonance imaging of inner ear[J]. J Appl Clin Med Phys, 2021, 22(9): 332-338. DOI: 10.1002/acm2.13383.
[19]
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391.
[20]
WU Y L. Simultaneous multi-slice echo planar imaging sequence design and image reconstruction for MRI[D]. Chengdu: University of Electronic Science and Technology of China, 2021. DOI: 10.27005/d.cnki.gdzku.2021.004461.
[21]
ZHANG H N, SONG Q W, ZHANG N, et al. Application of compressed sensing technology in the fast spin echo diffusion weighted imaging of the skull base[J]. J Clin Radiol, 2022, 41(2): 340-345. DOI: 10.13437/j.cnki.jcr.2022.02.040.
[22]
FENG L, BENKERT T, BLOCK K T, et al. Compressed sensing for body MRI[J]. J Magn Reson Imaging, 2017, 45(4): 966-987. DOI: 10.1002/jmri.25547.
[23]
KOPRIVICA D, MARTINHO R P, NOVAKOVIC M, et al. A denoising method for multidimensional magnetic resonance spectroscopy and imaging based on compressed sensing[J/OL]. J Magn Reson, 2022, 338: 107187 [2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/35292421/. DOI: 10.1016/j.jmr.2022.107187.
[24]
KAGA T, NODA Y, MORI T, et al. Diffusion-weighted imaging of the abdomen using echo planar imaging with compressed SENSE: feasibility, image quality, and ADC value evaluation[J/OL]. Eur J Radiol, 2021, 142: 109889 [2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/34388627/. DOI: 10.1016/j.ejrad.2021.109889.
[25]
WHITESIDE L, MCDAID L, HALES R B, et al. To see or not to see: evaluation of magnetic resonance imaging sequences for use in MR Linac-based radiotherapy treatment[J]. J Med Imag Radiat Sci, 2022, 53(3): 362-373. DOI: 10.1016/j.jmir.2022.06.005.
[26]
CURIONE D, CILIBERTI P, MONTI C B, et al. Compressed sensing cardiac cine imaging compared with standard balanced steady-state free precession cine imaging in a pediatric population[J/OL]. Radiol Cardiothorac Imaging, 2022, 4(2): e210109 [2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/35506130/. DOI: 10.1148/ryct.210109.
[27]
CHEN X R, PAN J F, HU Y, et al. Feasibility of one breath-hold cardiovascular magnetic resonance compressed sensing cine for left ventricular strain analysis[J/OL]. Front Cardiovasc Med, 2022, 9: 903203 [2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/36035944/. DOI: 10.3389/fcvm.2022.903203.
[28]
QIU J X, LIU J, BI Z X, et al. An investigation of 2D spine magnetic resonance imaging (MRI) with compressed sensing (CS)[J]. Skeletal Radiol, 2022, 51(6): 1273-1283. DOI: 10.1007/s00256-021-03954-x.
[29]
YE J C. Compressed sensing MRI: a review from signal processing perspective[J]. BMC Biomed Eng, 2019, 1(1): 1-17. DOI: 10.1186/s42490-019-0006-z.
[30]
VRANIC J E, CROSS N M, WANG Y, et al. Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality[J]. AJNR Am J Neuroradiol, 2019, 40(1): 92-98. DOI: 10.3174/ajnr.A5905.
[31]
DU X T, ZHANG X D, CHEN Y J, et al. Application of compressed sensing technology in two-dimensional magnetic resonance imaging of the ankle joint[J]. Chin J Tissue Eng Res, 2023, 27(9): 1396-1402. DOI: 10.12307/2023.205.
[32]
ZHANG H N, SONG Q W, ZHANG N, et al. Application of compressed sensing technology in rapid lumbar magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2023, 14(2): 132-137, 144. DOI: 10.12015/issn.1674-8034.2023.02.022.
[33]
KIDO T, KIDO T, NAKAMURA M, et al. Assessment of left ventricular function and mass on free-breathing compressed sensing real-time cine imaging[J]. Circ J, 2017, 81(10): 1463-1468. DOI: 10.1253/circj.CJ-17-0123.
[34]
YOSHIDA N, NAKAURA T, MORITA K, et al. Echo planar imaging with compressed sensitivity encoding (EPICS): usefulness for head and neck diffusion-weighted MRI[J/OL]. Eur J Radiol, 2022, 155: 110489 [2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/36037584/. DOI: 10.1016/j.ejrad.2022.110489.
[35]
LI Q, SU C Q, WU P F, et al. Clinical value of high-resolution compressed sensing TOF-MRA in assessing Suzuki classification and the dilatation of hemorrhage related vascular in patients with moyamoya disease[J]. Chin J Magn Reson Imag, 2023, 14(4): 29-33. DOI: 10.12015/issn.1674-8034.2023.04.006.

PREV Analysis of resting-state voxel-mirrored homotopic connectivity in severe obstructive sleep apnea
NEXT Prediction of habitat subregions of the glioblastoma microenvironment based on multimodal MRI radiomics for MGMT promoter methylation expression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn