Share:
Share this content in WeChat
X
Clinical Article
Value of T1WI enhanced radiomics model for predicting EGFR mutations in non-small cell lung cancer
HUANG Jinxiang  CHEN Jieyun 

Cite this article as: HUANG J X, CHEN J Y. Value of T1WI enhanced radiomics model for predicting EGFR mutations in non-small cell lung cancer[J]. Chin J Magn Reson Imaging, 2023, 14(11): 42-47. DOI:10.12015/issn.1674-8034.2023.11.008.


[Abstract] Objective To explore the predictive value of T1WI-enhanced radiomics model for non-small cell lung cancer brain metastases in predicting epithelial growth factor receptor (EGFR) mutation status in non-small cell lung cancer.Materials and Methods The imaging data of cranial magnetic resonance non-contrast scan + contrast examination of 97 patients with non-small cell lung cancer brain metastases before treatment were retrospectively analyzed (50 EGFR mutant and 47 EGFR wild type), and randomly grouped into training group and test group according to 8 : 2. The radiomics features were extracted from the T1WI-enhanced transverse, coronal and sagittal positions, and the dimensionality reduction and screening of the radiomics features were successively carried out by VarianceThreshold, SelectKBest and least absolute shrinkage and selection operator (LASSO), and the support vector machines (SVM) and logistic regression (LR) were used for classifier modeling, and cross-validation by 5-fold method, finally the performance of the prediction model was evaluated in the test group, the receiver operating characteristic (ROC) curve of the training group and the test group was drawn to evaluate the prediction efficiency, and the difference between the models is compared by DeLong test.Results The AUCs of T1WI enhanced transverse, coronal and sagittal radiomics models reached 0.64, 0.68 and 0.80, respectively. The AUC of the combined sequence model test group can reach 0.84, among which the LR classifier has the best prediction efficiency, the AUC, sensitivity, specificity and accuracy of the training group are 0.86, 74%, 75% and 76%, respectively, and the AUC, sensitivity, specificity and accuracy of the test group are 0.84, 80%, 78% and 80%, respectively, and the DeLong test between the models has no significant significance (P>0.05).Conclusions Radiomics model based on T1WI enhanced transverse, coronal and sagittal positions can predict EGFR mutation status, and the LR classifier model combined with sequence has the best prediction efficiency, which is helpful to guide the rational selection of targeted drug therapy and individualized precision medicine in clinical practice.
[Keywords] brain metastases;non-small cell lung cancer;radiomics, magnetic resonance imaging;epidermal growth factor receptor

HUANG Jinxiang1   CHEN Jieyun2*  

1 Department of Radiology, Affiliated Zhangzhou Hospital of Fujian Medical University, Zhangzhou 363005, China

2 Department of Radiology, Affiliated Quanzhou Frist Hospital of Fujian Medical University, Quanzhou 362000, China

Corresponding author: CHEN J Y, E-mail: 2207934327@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Fujian Province (No. 2022J011463).
Received  2023-07-02
Accepted  2023-11-06
DOI: 10.12015/issn.1674-8034.2023.11.008
Cite this article as: HUANG J X, CHEN J Y. Value of T1WI enhanced radiomics model for predicting EGFR mutations in non-small cell lung cancer[J]. Chin J Magn Reson Imaging, 2023, 14(11): 42-47. DOI:10.12015/issn.1674-8034.2023.11.008.

[1]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[2]
HAN B H, LI K, ZHOU C C, et al. Chinese Expert Consensus on Antiangiogenic Drugs for Advanced Non-small Cell Lung Cancer (2020 Edition)[J]. Natl Med J China, 2022, 102(48): 3819-3835. DOI: 10.3760/cma.j.cn112137-20221022-02207.
[3]
GONCALVES P H, PETERSON S L, VIGNEAU F D, et al. Risk of brain metastases in patients with nonmetastatic lung cancer: Analysis of the metropolitan detroit surveillance, epidemiology, and end results (SEER) data[J]. Cancer, 2016, 122(12): 1921-1927. DOI: 10.1002/cncr.30000.
[4]
SORIA J C, OHE Y, VANSTEENKISTE J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(2): 113-125. DOI: 10.1056/NEJMoa1713137.
[5]
RAMALINGAM S S, VANSTEENKISTE J, PLANCHARD D, et al. Overall survival with osimertinib in untreated, EGFR-Mutated advanced NSCLC[J]. N Engl J Med. 2020, 382(1): 41-50. DOI: 10.1056/NEJMoa1913662.
[6]
ZHENG Y, LI S H, LIN G W, et al. MRI features of NSCLC brain metastasis with different EGFR mutations[J]. Geriatr Heal Care, 2019, 25(2): 190-195, 213. DOI: 10.3969/j.issn.1008-8296.2019.02.016.
[7]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48: 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[8]
TU W T, FAN L, LIU S Y, et al. Progress on research of radiomics in lung cancer[J]. Chin J Cancer Prev Treat, 2012, 48: 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[9]
JIA T Y, XIONG J F, LI X Y, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling[J]. Eur Radiol. 2019, 29(9): 4742-4750. DOI: 10.1007/s00330-019-06024-y.
[10]
YANG X, DONG X, WANG J, et al. Computed tomography-based radiomics signature: A potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule[J/OL]. Oncologist, 2019, 24(11): e1156-e1164 [2023-07-02]. https://pubmed.ncbi.nlm.nih.gov/30936378/. DOI: 10.1634/theoncologist.2018-0706.
[11]
HAIM O, ABRAMOV S, SHOFTY B, et al. Predicting EGFR mutation status by a deep learning approach in patients with non-small cell lung cancer brain metastases[J]. Neurooncol, 2022, 157(1): 63-69. DOI: 10.1007/s11060-022-03946-4.
[12]
JIANG X, REN M, SHUANG X, et al. Multiparametric MRI-based radiomics approaches for preoperative prediction of EGFR mutation status in spinal bone metastases in patients with lung adenocarcinoma[J]. Magn Reson Imaging, 2021, 54(2): 497-507. DOI: 10.1002/jmri.27579.
[13]
LV C S, WANG J, XU Z J, et al. Correlation between lung cancer EGFR mutation status and CT texture GLCM[J]. Chin J Clin Med Imaging, 2017, 28(9): 624-627. DOI: 10.3969/j.issn.1008-1062.2017.09.006.
[14]
YIP S S, KIM J, COROLLER T P, et al. Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer[J]. J Nucl Med, 2017, 58(4): 569-576. DOI: 10.2967/jnumed.116.181826.
[15]
KOBAYASHI Y, MITSUDOMI T. Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy[J]. Cancer Sci, 2016, 107(9): 1179-1186. DOI: 10.1111/cas.12996.
[16]
WANG G, WANG B, WANG Z, et al. Radiomics signature of brain metastasis: prediction of EGFR mutation status[J]. Eur Radiol, 2021, 31(7): 4538-4547. DOI: 10.1007/s00330-020-07614-x.
[17]
PARK Y W, AN C, LEE J, et al. Diffusion tensor and postcontrast T1-weighted imaging radiomics to differentiate the epidermal growth factor receptor mutation status of brain metastases from non-small cell lung cancer[J]. Neuroradiology, 2021, 63(3): 343-352. DOI: 10.1007/s00234-020-02529-2.
[18]
PARK Y W, CHOI D, PARK J E, et al. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation[J/OL]. Sci Rep, 2021, 11(1): 2913 [2023-07-02]. https://pubmed.ncbi.nlm.nih.gov/33536499/. DOI: 10.1038/s41598-021-82467-y.
[19]
SHOFTY B, ARTZI M, SHTROZBERG S, et al. Virtual biopsy using MRI radiomics for prediction of BRAF status in melanoma brain metastasis[J/OL]. Sci Rep2020, 10: 6623 [2023-07-02]. https://pubmed.ncbi.nlm.nih.gov/33536499/. DOI: 10.1038/s41598-020-63821-y.
[20]
ANTONOPOULOS A S, BOUTSIKOU M, SIMANTIRIS S, et al. Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes[J/OL]. Sci Rep, 2021, 11(1): 23596 [2023-07-02]. https://pubmed.ncbi.nlm.nih.gov/34880319/. DOI: 10.1038/s41598-021-02971-z.
[21]
DIGUMARTHY S R, PADOLE A M, GULLO R L, et al. Can CT radiomic analysis in NSCLC predict histology and EGFR mutation status?[J/OL]. Medicine (Baltimore), 2019, 98: e13963 [2023-07-02]. https://pubmed.ncbi.nlm.nih.gov/30608433/. DOI: 10.1097/MD.0000000000013963.
[22]
HSIAO S H, CHOU Y T, LIN S E, et al. Brain metastases in patients with non-small cell lung cancer: the role of mutated-EGFRs with an exon 19 deletion or L858R point mutation in cancer cell dissemination[J]. Oncotarget, 2017, 8(32): 53405-53418. DOI: 10.18632/oncotarget.18509.
[23]
YANG D L, RAO G, MARTINEZ J, et al. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma[J]. Med Phys, 2015, 42(11): 6725-6735. DOI: 10.1118/1.4934373.
[24]
YANG L P, XU P P, ZHANG Y, et al. A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma[J]. Neuroradiology, 2022, 64(7): 1373-1382. DOI: 10.1007/s00234-022-02894-0.
[25]
KUSHNIRSKY M, NGUYEN V, KATZ J S, et al. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes[J]. Neurosurg, 2016, 124(2): 489-495. DOI: 10.3171/2015.2.JNS141993.
[26]
LI S, QIU N, YE C K, et al. MRI texture analysis on differential diagnosis of brain abscess and glioblastoma[J]. Clin J Neurosurg, 2019, 16(3): 245-249. DOI: 10.3969/j.issn.1672-7770.2019.03.013.
[27]
LI X R, GUO Y, XU C, et al. Predicting the histological classification of cervical squamous cell carcinoma based on multi-sequence MRI radiomics model[J]. Chin J Magn Reson Imaging, 2020, 11(7): 481-486. DOI: 10.12015/issn.1674-8034.2020.07.001.
[28]
HUANG S, CAI N, PACHECO P P, et al. Applications of support vector machine (SVM) learning in cancer genomics[J]. Cancer Genomics Proteomics, 2018, 15(1): 41-51. DOI: 10.21873/cgp.20063.
[29]
CHEN B T, JIN T, YE N, et al. Radiomic prediction of mutation status based on MR imaging of lung cancer brain metastases[J]. Magn Reson Imaging, 2020, 69: 49-56. DOI: 10.1016/j.mri.2020.03.002.
[30]
AHN S J, KWON H, YANG J J, et al. Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer[J/OL]. Sci Rep, 2020, 10(1): 8905 [2023-07-02]. https://pubmed.ncbi.nlm.nih.gov/32483122/. DOI: 10.1038/s41598-020-65470-7.
[31]
REN M, YANG H, LAI Q, et al. MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients[J]. Med Phys, 2021, 48: 5142-5151. DOI: 10.1002/mp.15137.

PREV A Meta-analysis of myocardial tissue characteristics in patients with pulmonary hypertention evaluated by MR T1 mapping
NEXT Diagnostic value analysis of multimodal magnetic resonance imaging combined with prognostic factors in HER-2 low expression breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn