Share:
Share this content in WeChat
X
Clinical Article
Application of ASL in renal function injury and staging of T2DM
LIU Jian  WU Yu  XU Min  ZHANG Xunlan  CHEN Hengzhi  WANG Rongpin  ZENG Xianchun 

Cite this article as: LIU J, WU Y, XU M, et al. Application of ASL in renal function injury and staging of T2DM[J]. Chin J Magn Reson Imaging, 2023, 14(11): 90-96. DOI:10.12015/issn.1674-8034.2023.11.015.


[Abstract] Objective To explore the correlation and clinical value of arterial spin labeling (ASL) in quantitatively evaluating renal blood flow (RBF) and renal injury in patients with type 2 diabetes mellitus (T2DM).Materials and Methods Prospective recruitment of T2DM patients with varying degrees of renal function impairment was conducted. The patients were grouped based on the presence or absence of proteinuria and the estimated glomerular filtration rate (eGFR). Group A included T2DM patients without proteinuria, group B consisted of patients with proteinuria and eGFR≥60 mL/(min·1.73 m²), representing diabetic kidney disease (DKD) stages Ⅰ-Ⅱ, and group C comprised patients with 15 mL/(min·1.73 m²)≤eGFR<60 mL/(min·1.73 m²), representing DKD stages Ⅲ-Ⅳ. Healthy volunteers were included as a control group. Dual-kidney routine MRI scans and ASL scans were performed to obtain RBF values in the cortical region of both kidneys. Additionally, biochemical indicators such as renal function and urine analysis were collected. Statistical analysis was conducted to compare the differences in cortical RBF values among the groups and assess the correlation, sensitivity, and optimal diagnostic thresholds of the relevant indicators.Results No significant difference in cortical RBF values was found between the left and right kidneys (all P>0.05). There was a significant overall difference in cortical RBF values among the four groups (all P<0.001). Compared to the control group (174.28±23.89) mL/(100 g·min), group A exhibited a decrease to (159.66±28.54) mL/(100 g·min), group B decrease to (142.16±19.49) mL/(100 g·min), and group C showed the lowest value at (122.55±18.59) mL/(100 g·min). The reductions in RBF values for groups A, B, and C were 8%, 18%, and 30%, respectively. Group C had a significant decrease in cortical RBF values compared to groups A and B (both P<0.05), with reductions of 23% and 14%, respectively. Group B also had a significant decrease compared to group A (P<0.05), with a reduction of 11%. Cortical RBF values showed a negative correlation with serum creatinine (Scr) levels (r=-0.429, P<0.001) and a positive correlation with eGFR (r=0.377, P<0.001). The area under the curve (AUC) values of cortical RBF in distinguishing healthy volunteers from T2DM were 0.651 (95% CI: 0.520-0.768), distinguishing T2DM from DKD were 0.734 (95% CI: 0.619-0.829), and distinguishing early-stage DKD from mid-to-late-stage DKD was 0.760 (95% CI: 0.580-0.891).Conclusions ASL imaging provides a noninvasive quantitative evaluation of RBF changes and can effectively assess the progression of T2DM based on decreased RBF. It holds promise as an effective imaging method for noninvasively evaluating renal function damage in patients with T2DM.
[Keywords] diabetes mellitus, type 2;diabetic kidney disease;renal blood flow;magnetic resonance imaging;arterial spin labeling

LIU Jian   WU Yu   XU Min   ZHANG Xunlan   CHEN Hengzhi   WANG Rongpin   ZENG Xianchun*  

Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang 550002, China

Corresponding author: ZENG X C, E-mail: zengxianchun04@foxmail.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82060314).
Received  2023-04-30
Accepted  2023-08-09
DOI: 10.12015/issn.1674-8034.2023.11.015
Cite this article as: LIU J, WU Y, XU M, et al. Application of ASL in renal function injury and staging of T2DM[J]. Chin J Magn Reson Imaging, 2023, 14(11): 90-96. DOI:10.12015/issn.1674-8034.2023.11.015.

[1]
HUA F. New insights into diabetes mellitus and its complications: a narrative review[J/OL]. Ann Transl Med, 2020, 8(24): 1689 [2023-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812242/. DOI: 10.21037/atm-20-7243.
[2]
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119 [2023-03-27]. https://www.diabetesresearchclinicalpractice.com/article/S0168-8227(21)00478-2/fulltext. DOI: 10.1016/j.diabres.2021.109119.
[3]
MA R C W. Epidemiology of diabetes and diabetic complications in China[J]. Diabetologia, 2018, 61(6): 1249-1260. DOI: 10.1007/s00125-018-4557-7.
[4]
American Diabetes Association. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2021[J]. Diabetes Care, 2021, 44(Suppl 1): S151-S167. DOI: 10.2337/dc21-S011.
[5]
KENNEDY-LYDON T M, CRAWFORD C, WILDMAN S S, et al. Renal pericytes: regulators of medullary blood flow[J]. Acta Physiol, 2013, 207(2): 212-225. DOI: 10.1111/apha.12026.
[6]
WILLIAMS D S, DETRE J A, LEIGH J S, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water[J]. Proc Natl Acad Sci U S A, 1992, 89(1): 212-216. DOI: 10.1073/pnas.89.1.212.
[7]
LUO W, WANG J, CHEN M M, et al. Alterations of cerebral blood flow and its connectivity in olfactory-related brain regions of type 2 diabetes mellitus patients[J/OL]. Front Neurosci, 2022, 16: 904468 [2023-03-27]. https://www.frontiersin.org/articles/10.3389/fnins.2022.904468/full. DOI: 10.3389/fnins.2022.904468.
[8]
LIU J K, YANG X, LI Y, et al. Cerebral blood flow alterations in type 2 diabetes mellitus: a systematic review and meta-analysis of arterial spin labeling studies[J/OL]. Front Aging Neurosci, 2022, 14: 847218 [2023-03-27]. https://www.frontiersin.org/articles/10.3389/fnagi.2022.847218/full. DOI: 10.3389/fnagi.2022.847218.
[9]
LI M R, LI Y F, ZHAO K, et al. Changes in the structure, perfusion, and function of the hippocampus in type 2 diabetes mellitus[J/OL]. Front Neurosci, 2022, 16: 1070911 [2023-03-27]. https://www.frontiersin.org/articles/10.3389/fnins.2022.1070911/full. DOI: 10.3389/fnins.2022.1070911.
[10]
ZHANG Y, ZHANG X L, MA G Y, et al. Neurovascular coupling alterations in type 2 diabetes: a 5-year longitudinal MRI study[J/OL]. BMJ Open Diabetes Res Care, 2021, 9(1): e001433 [2023-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816934/. DOI: 10.1136/bmjdrc-2020-001433.
[11]
MAO W, DING Y Q, DING X Q, et al. Capability of arterial spin labeling and intravoxel incoherent motion diffusion-weighted imaging to detect early kidney injury in chronic kidney disease[J]. Eur Radiol, 2023, 33(5): 3286-3294. DOI: 10.1007/s00330-022-09331-z.
[12]
WANG B, WANG Y F, LI L N, et al. Diffusion kurtosis imaging and arterial spin labeling for the noninvasive evaluation of persistent post-contrast acute kidney injury[J]. Magn Reson Imaging, 2022, 87: 47-55. DOI: 10.1016/j.mri.2021.12.004.
[13]
WANG W, YU Y M, LI X, et al. Early detection of subclinical pathology in patients with stable kidney graft function by arterial spin labeling[J]. Eur Radiol, 2021, 31(5): 2687-2695. DOI: 10.1007/s00330-020-07369-5.
[14]
VALENTIN B, STABINSKA J, REURIK F, et al. Feasibility of renal perfusion quantification by Fourier decomposition MRI[J]. Magn Reson Imaging, 2022, 85: 3-9. DOI: 10.1016/j.mri.2021.10.003.
[15]
LI X, WANG W, CHENG D R, et al. Perfusion and oxygenation in allografts with transplant renal artery stenosis: evaluation with functional magnetic resonance imaging[J/OL]. Clin Transplant, 2022, 36(11): e14806 [2023-03-27]. https://onlinelibrary.wiley.com/doi/10.1111/ctr.14806. DOI: 10.1111/ctr.14806.
[16]
Expert Group of Chinese Society of Nephrology. Chinese guidelines for diagnosis and treatment of diabetic kidney disease[J]. Chinese Journal of Nephrology, 2021, 37(3): 255-304. DOI: 10.3760/cma.j.cn441217-20201125-00041.
[17]
Chinese Society of Nephrology. Expert consensus on diagnosis, prognosis evaluation and biomarker application of diabetic kidney disease[J] . Chinese Journal of Nephrology, 2022, 38(8): 771-784. DOI: 10.3760/cma.j.cn441217-20220106-00112.
[18]
LIU B, LIANG M L, ZHANG J Q, et al. Assessment of renal cortex blood flow with arterial spin labeling MRI in patients with type 2 diabetes[J]. Chin J Med Imag Technol, 2017, 33(5): 747-751. DOI: 10.13929/j.1003-3289.201608105.
[19]
PRASAD N, VEERANKI V, BHADAURIA D, et al. Non-diabetic kidney disease in type 2 diabetes mellitus: a changing spectrum with therapeutic ascendancy[J/OL]. J Clin Med, 2023, 12(4): 1705 [2023-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964578/. DOI: 10.3390/jcm12041705.
[20]
SRIDHAR V S, YAU K, BENHAM J L, et al. Sex and gender related differences in diabetic kidney disease[J]. Semin Nephrol, 2022, 42(2): 170-184. DOI: 10.1016/j.semnephrol.2022.04.007.
[21]
ZHANG J L, LEE V S. Renal perfusion imaging by MRI[J]. J Magn Reson Imaging, 2020, 52(2): 369-379. DOI: 10.1002/jmri.26911.
[22]
CHEN X Y, XIAO W X, LI X C, et al. In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria[J]. Front Med, 2014, 8(4): 471-476. DOI: 10.1007/s11684-014-0365-8.
[23]
LEE C H, LAM K S L. Biomarkers of progression in diabetic nephropathy: the past, present and future[J]. J Diabetes Investig, 2015, 6(3): 247-249. DOI: 10.1111/jdi.12329.
[24]
ALSOP D C, DETRE J A, GOLAY X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.
[25]
HERNANDEZ-GARCIA L, ARAMENDÍA-VIDAURRETA V, BOLAR D S, et al. Recent technical developments in ASL: a review of the state of the art[J]. Magn Reson Med, 2022, 88(5): 2021-2042. DOI: 10.1002/mrm.29381.
[26]
BECKER A S, ROSSI C. Renal arterial spin labeling magnetic resonance imaging[J/OL]. Nephron, 2017, 135(1): 1-5 [2023-03-27]. https://sci-hub.ru/10.1159/000450797. DOI: 10.1159/000450797.
[27]
ODUDU A, NERY F, HARTEVELD A A, et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper[J/OL]. Nephrol Dial Transplant, 2018, 33(suppl_2): ii15-ii21 [2023-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106644/. DOI: 10.1093/ndt/gfy180.
[28]
HARTEVELD A A, BOER A D, FRANKLIN S L, et al. Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI[J]. MAGMA, 2020, 33(1): 81-94. DOI: 10.1007/s10334-019-00806-7.
[29]
WANG Y M, LIU A L, LIU J H, et al. Arterial spin labeling and multi-phase enhancement technique in evaluation of renal blood flow in different age healthy subjects[J]. Chin J Med Imag Technol, 2017, 33(2): 265-270. DOI: 10.13929/j.1003-3289.201606164.
[30]
BROWN R S, SUN M R M, STILLMAN I E, et al. The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy[J]. Nephrol Dial Transplant, 2020, 35(6): 970-978. DOI: 10.1093/ndt/gfz066.
[31]
FALKEVALL A, MEHLEM A, PALOMBO I, et al. Reducing VEGF-B signaling ameliorates renal lipotoxicity and protects against diabetic kidney disease[J]. Cell Metab, 2017, 25(3): 713-726. DOI: 10.1016/j.cmet.2017.01.004.
[32]
MORA-GUTIÉRREZ J M, GARCIA-FERNANDEZ N, SLON ROBLERO M F, et al. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy[J]. J Magn Reson Imaging, 2017, 46(6): 1810-1817. DOI: 10.1002/jmri.25717.
[33]
LI L P, TAN H, THACKER J M, et al. Evaluation of renal blood flow in chronic kidney disease using arterial spin labeling perfusion magnetic resonance imaging[J]. Kidney Int Rep, 2017, 2(1): 36-43. DOI: 10.1016/j.ekir.2016.09.003.
[34]
WANG J, ZHANG Y D, YANG X D, et al. Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI[J]. Acad Radiol, 2012, 19(10): 1194-1200. DOI: 10.1016/j.acra.2012.04.021.

PREV Radiomics based on deep learning to predict T2 and T3 staging of rectal cancer
NEXT Application of MR amide proton transfer imaging and apparent diffusion coefficient in preoperative pathological grade assessment of bladder cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn