Share:
Share this content in WeChat
X
Clinical Article
A preliminary study of quantitative parameters derived from synthetic MRI for predicting the lymphovascular space invasion status in cervical squamous cell carcinoma
GUO Limei  WANG Jun  WU Wenqi  ZHANG Yujing  ZHANG Runmei  NIU Jinliang 

Cite this article as: GUO L M, WANG J, WU W Q, et al. A preliminary study of quantitative parameters derived from synthetic MRI for predicting the lymphovascular space invasion status in cervical squamous cell carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(11): 103-107, 120. DOI:10.12015/issn.1674-8034.2023.11.017.


[Abstract] Objective To investigate the feasibility of synthetic MRI [longitudinal relaxation time (T1), transverse relaxation time (T2), and proton density (PD)] for the prediction of the lymphovascular space invasion (LVSI) status in cervical squamous cell carcinoma (CSCC).Materials and methods Patients who first went to the Second Hospital of Shanxi Medical University for suspected cervical cancer from May 2020 to November 2022 were prospectively collected. All patients underwent preoperative routine MRI scan, sagittal synthetic MRI to obtain the T1, T2, and PD values of the tumor. According to the LVSI status confirmed by postoperative pathological diagnosis, the subjects were divided into positive and negative LVSI groups. Use independent sample t-test or U-test to compare T1, T2 and PD values between the two groups. The receiver operating characteristic (ROC) curve was applied to evaluate the diagnostic efficacy of each parameter in predicting the LVSI status of CSCC.Results A total of 80 patients with operatively pathology confirmed CSCC were included in the study, including positive LVSI (n=51) and negative LVSI (n=29). There were significant differences in T1 value [(1191.60±101.17) ms vs. (1316.58±107.42) ms] and T2 value [(80.72±5.62) ms vs. (89.79±7.43) ms], all P<0.001. In term of distinguishing LVSI positive from LVSI negative, the area under the curve (AUC) for T1 and T2 values were 0.798 and 0.850, respectively. A combination of T1 and T2 values showed a higher diagnostic performance (AUC=0.881), although there was no significant difference between T1, T2 and the AUC value of the combined parameter model (P>0.05) by DeLong test.Conclusion The quantitative parameters from synthetic MRI have potential for evaluating the LVSI status of CSCC and to help to optimize therapeutic strategies.
[Keywords] cervical neoplasms;cervical squamous cell carcinoma;synthetic magnetic resonance imaging;lymphovascular space invasion;predict

GUO Limei   WANG Jun   WU Wenqi   ZHANG Yujing   ZHANG Runmei   NIU Jinliang*  

Department of Radiology, Second Hospital of Shanxi Medical School, Taiyuan 030001, China

Corresponding author: NIU J L, E-mail: sxlscjy@163.com

Conflicts of interest   None.

Received  2023-03-27
Accepted  2023-10-27
DOI: 10.12015/issn.1674-8034.2023.11.017
Cite this article as: GUO L M, WANG J, WU W Q, et al. A preliminary study of quantitative parameters derived from synthetic MRI for predicting the lymphovascular space invasion status in cervical squamous cell carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(11): 103-107, 120. DOI:10.12015/issn.1674-8034.2023.11.017.

[1]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[2]
MARTH C, LANDONI F, MAHNER S, et al. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2017, 28(suppl_4): iv72-iv83. DOI: 10.1093/annonc/mdx220.
[3]
COHEN P A, JHINGRAN A, OAKNIN A, et al. Cervical cancer[J]. Lancet, 2019, 393(10167): 169-182. DOI: 10.1016/s0140-6736(18)32470-x.
[4]
BIEWENGA P, VAN DER VELDEN J, MOL B W J, et al. Prognostic model for survival in patients with early stage cervical cancer[J]. Cancer, 2011, 117(4): 768-776. DOI: 10.1002/cncr.25658.
[5]
YU Q, LOU X M, HE Y. Prediction of local recurrence in cervical cancer by a Cox model comprised of lymph node status, lymph-vascular space invasion, and intratumoral Th17 cell-infiltration[J/OL]. Med Oncol, 2014, 31(1): 795 [2023-04-03]. https://link.springer.com/article/10.1007/s12032-013-0795-1. DOI: 10.1007/s12032-013-0795-1.
[6]
HANPRASERTPONG J, JIAMSET I. Late recurrence of early stage cervical cancer more than 3 years after radical hysterectomy with pelvic node dissection[J]. Oncol Res Treat, 2017, 40(5): 270-276. DOI: 10.1159/000464408.
[7]
POL F J, ZUSTERZEEL P L, VAN HAM M A, et al. Satellite lymphovascular space invasion: an independent risk factor in early stage cervical cancer[J]. Gynecol Oncol, 2015, 138(3): 579-584. DOI: 10.1016/j.ygyno.2015.06.035.
[8]
KOH W J, ABU-RUSTUM N R, BEAN S, et al. Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2019, 17(1): 64-84. DOI: 10.6004/jnccn.2019.0001.
[9]
BENTIVEGNA E, GOUY S, MAULARD A, et al. Oncological outcomes after fertility-sparing surgery for cervical cancer: a systematic review[J/OL]. Lancet Oncol, 2016, 17(6): e240-e253 [2023-04-03]. https://linkinghub.elsevier.com/retrieve/pii/S1470-2045(16)30032-8. DOI: 10.1016/S1470-2045(16)30032-8.
[10]
ZHOU X L, LAI H, WEN X L, et al. Value of T2WI-FS based radiomics features in the diagnosis of cervical cancer metastasis and lymph vascular space invasion[J]. Chin J Magn Reson Imag, 2021, 12(7): 69-71, 76. DOI: 10.12015/issn.1674-8034.2021.07.014.
[11]
LIA M, HORN L C, SODEIKAT P, et al. The diagnostic value of core needle biopsy in cervical cancer: A retrospective analysis[J/OL]. PLoS One, 2022, 17(1): e0262257 [2023-08-04]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262257. DOI: 10.1371/journal.pone.0262257.
[12]
BIDUS M A, CAFFREY A S, YOU W B, et al. Cervical biopsy and excision procedure specimens lack sufficient predictive value for lymph-vascular space invasion seen at hysterectomy for cervical cancer[J/OL]. Am J Obstet Gynecol, 2008, 199(2): 151.e1-151.e4 [2023-08-04]. https://linkinghub.elsevier.com/retrieve/pii/S0002-9378(08)00159-2. DOI: 10.1016/j.ajog.2008.02.017.
[13]
MI H L, SUO S T, CHENG J J, et al. The invasion status of lymphovascular space and lymph nodes in cervical cancer assessed by mono-exponential and bi-exponential DWI-related parameters[J]. Clin Radiol, 2020, 75(10): 763-771. DOI: 10.1016/j.crad.2020.05.024.
[14]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of IB1-IIA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2023-04-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512406/. DOI: 10.3389/fonc.2022.916846.
[15]
SIBLEY C T, NOURELDIN R A, GAI N, et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy[J]. Radiology, 2012, 265(3): 724-732. DOI: 10.1148/radiol.12112721.
[16]
AREGA T W, BRICQ S, LEGRAND F, et al. Automatic uncertainty-based quality controlled T1 mapping and ECV analysis from native and post-contrast cardiac T1 mapping images using Bayesian vision transformer[J/OL]. Med Image Anal, 2023, 86: 102773 [2023-04-03]. https://linkinghub.elsevier.com/retrieve/pii/S1361-8415(23)00034-8. DOI: 10.1016/j.media.2023.102773.
[17]
HEPP T, KALMBACH L, KOLB M, et al. T2 mapping for the characterization of prostate lesions[J]. World J Urol, 2022, 40(6): 1455-1461. DOI: 10.1007/s00345-022-03991-8.
[18]
ADAMS L C, RALLA B, JURMEISTER P, et al. Native T1 mapping as an in vivo biomarker for the identification of higher-grade renal cell carcinoma: correlation with histopathological findings[J]. Invest Radiol, 2019, 54(2): 118-128. DOI: 10.1097/RLI.0000000000000515.
[19]
LIU Y W, NIU H J, YIN H X, et al. A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods[J]. Chin J Magn Reson Imag, 2022, 13(4): 89-93. DOI: 10.12015/issn.1674-8034.2022.04.016.
[20]
CUI Y D, HAN S Y, LIU M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2): 552-564. DOI: 10.1002/jmri.27075.
[21]
MENG T B, HE N, HE H Q, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI[J/OL]. Cancer Imaging, 2020, 20(1): 88 [2023-04-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737277/. DOI: 10.1186/s40644-020-00365-4.
[22]
RONSINI C, ANCHORA L P, RESTAINO S, et al. The role of semiquantitative evaluation of lympho-vascular space invasion in early stage cervical cancer patients[J]. Gynecol Oncol, 2021, 162(2): 299-307. DOI: 10.1016/j.ygyno.2021.06.002.
[23]
SPIEKER M, KATSIANOS E, GASTL M, et al. T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(5): 574-582. DOI: 10.1093/ehjci/jex230.
[24]
CACCIAGUERRA L, PAGANI E, RADAELLI M, et al. MR T2-relaxation time as an indirect measure of brain water content and disease activity in NMOSD[J/OL]. J Neurol Neurosurg Psychiatry, 2022: jnnp-2022-328956 [2023-04-03]. https://jnnp.bmj.com/content/93/7/753.long. DOI: 10.1136/jnnp-2022-328956.
[25]
GE Y X, HU S D, WANG Z, et al. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer[J]. Eur Radiol, 2021, 31(5): 3347-3354. DOI: 10.1007/s00330-020-07359-7.
[26]
ADAMS L C, BRESSEM K K, JURMEISTER P, et al. Use of quantitative T2 mapping for the assessment of renal cell carcinomas: first results[J/OL]. Cancer Imaging, 2019, 19(1): 35 [2023-04-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555952/. DOI: 10.1186/s40644-019-0222-8.
[27]
KLINGEBIEL M, SCHIMMÖLLER L, WEILAND E, et al. Value of T2 mapping MRI for prostate cancer detection and classification[J]. J Magn Reson Imaging, 2022, 56(2): 413-422. DOI: 10.1002/jmri.28061.
[28]
LI S J, LIU J, ZHANG F F, et al. Novel T2 mapping for evaluating cervical cancer features by providing quantitative T2 maps and synthetic morphologic images: a preliminary study[J]. J Magn Reson Imaging, 2020, 52(6): 1859-1869. DOI: 10.1002/jmri.27297.
[29]
LI S J, ZHANG Z X, LIU J, et al. The feasibility of a radial turbo-spin-echo T2 mapping for preoperative prediction of the histological grade and lymphovascular space invasion of cervical squamous cell carcinoma[J/OL]. Eur J Radiol, 2021, 139: 109684 [2023-04-03]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(21)00164-9. DOI: 10.1016/j.ejrad.2021.109684.
[30]
PUNTMANN V O, CARR-WHITE G, JABBOUR A, et al. T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure[J]. JACC Cardiovasc Imaging, 2016, 9(1): 40-50. DOI: 10.1016/j.jcmg.2015.12.001.
[31]
MARQUES M D, WEINBERG R, KAPOOR S, et al. Myocardial fibrosis by T1 mapping magnetic resonance imaging predicts incident cardiovascular events and all-cause mortality: the Multi-Ethnic Study of Atherosclerosis[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(10): 1407-1416. DOI: 10.1093/ehjci/jeac010.
[32]
POINDRON V, CHATELUS E, CANUET M, et al. T1 mapping cardiac magnetic resonance imaging frequently detects subclinical diffuse myocardial fibrosis in systemic sclerosis patients[J]. Semin Arthritis Rheum, 2020, 50(1): 128-134. DOI: 10.1016/j.semarthrit.2019.06.013.
[33]
ADAMS L C, JURMEISTER P, RALLA B, et al. Assessment of the extracellular volume fraction for the grading of clear cell renal cell carcinoma: first results and histopathological findings[J]. Eur Radiol, 2019, 29(11): 5832-5843. DOI: 10.1007/s00330-019-06087-x.
[34]
FUKUKURA Y, KUMAGAE Y, FUJISAKI Y, et al. Extracellular volume fraction with MRI: As an alternative predictive biomarker to dynamic contrast-enhanced MRI for chemotherapy response of pancreatic ductal adenocarcinoma[J/OL]. Eur J Radiol, 2021, 145: 110036 [2023-09-03]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(21)00517-9. DOI: 10.1016/j.ejrad.2021.110036.
[35]
QIN X L, YANG T F, HUANG Z K, et al. Hepatocellular carcinoma grading and recurrence prediction using T1 mapping on gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging[J]. Oncol Lett, 2019, 18(3): 2322-2329. DOI: 10.3892/ol.2019.10557.
[36]
WANG W, FAN X F, YANG J, et al. Preliminary MRI study of extracellular volume fraction for identification of lymphovascular space invasion of cervical cancer[J]. J Magn Reson Imaging, 2023, 57(2): 587-597. DOI: 10.1002/jmri.28423.
[37]
ZHAO L, LIANG M, XIE L Z, et al. Prediction of pathological prognostic factors of rectal cancer by relaxation maps from synthetic magnetic resonance imaging[J/OL]. Eur J Radiol, 2021, 138: 109658 [2023-04-03]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(21)00138-8. DOI: 10.1016/j.ejrad.2021.109658.
[38]
STANISZ G J, ODROBINA E E, PUN J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T[J]. Magn Reson Med, 2005, 54(3): 507-512. DOI: 10.1002/mrm.20605.
[39]
XU C, YU Y, LI X R, et al. Value of integrated PET-IVIM MRI in predicting lymphovascular space invasion in cervical cancer without lymphatic metastasis[J]. Eur J Nucl Med Mol Imaging, 2021, 48(9): 2990-3000. DOI: 10.1007/s00259-021-05208-3.

PREV Application of MR amide proton transfer imaging and apparent diffusion coefficient in preoperative pathological grade assessment of bladder cancer
NEXT Analysis of the use of MRI and CT in the diagnosis of SAPHO syndrome
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn