Share:
Share this content in WeChat
X
Review
Advances in the application of magnetic resonance imaging in the localization of therapeutic targets for transcranial magnetic stimulation in depression
LUO Xin  ZHANG Bin 

Cite this article as: LUO X, ZHANG B. Advances in the application of magnetic resonance imaging in the localization of therapeutic targets for transcranial magnetic stimulation in depression[J]. Chin J Magn Reson Imaging, 2023, 14(11): 150-154. DOI:10.12015/issn.1674-8034.2023.11.025.


[Abstract] Transcranial magnetic stimulation (TMS) is widely used in clinical interventions for depression, but its efficacy varies, possibly due to differences in target site localization. In recent years, with the development of magnetic resonance imaging (MRI) technology, the use of MRI structural and functional data to identify TMS targets for antidepressant effects has become a research hotspot. Therefore, this review summarized the application progress of MRI in TMS target site selection for depression treatment, including the following aspects: Precise brain region delineation and definition of millimeter-level target coordinates using MRI structural imaging; Determination of individualized stimulation target locations by calculating functional connectivity and effective connectivity parameters from MRI functional imaging; The use of MRI structural imaging for assisted targeting to help operators accurately locate the target stimulation sites. This review aims to compile relevant research and provide references for improving the clinical efficacy of TMS.
[Keywords] magnetic resonance imaging;transcranial magnetic stimulation;functional connectivity;task-based functional magnetic resonance imaging;depression

LUO Xin1   ZHANG Bin2*  

1 Psychological and Psychiatric Neuroimage Lab, Affiliated Brain Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China

2 Psychological and Psychiatric Lab, Tianjin Anding Hospital, Tianjin 300074, China

Corresponding author: ZHANG B, E-mail: zhang.bin845@foxmail.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Guangdong Science and Technology Project (No. 2019B030316001).
Received  2023-05-06
Accepted  2023-10-13
DOI: 10.12015/issn.1674-8034.2023.11.025
Cite this article as: LUO X, ZHANG B. Advances in the application of magnetic resonance imaging in the localization of therapeutic targets for transcranial magnetic stimulation in depression[J]. Chin J Magn Reson Imaging, 2023, 14(11): 150-154. DOI:10.12015/issn.1674-8034.2023.11.025.

[1]
TOLENTINO J C, SCHMIDT S L. DSM-5 criteria and depression severity: implications for clinical practice[J/OL]. Front Psychiatry, 2018, 9: 450 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/30333763/. DOI: 10.3389/fpsyt.2018.00450.
[2]
RAFEYAN R, PAPAKOSTAS G I, JACKSON W C, et al. Inadequate response to treatment in major depressive disorder: augmentation and adjunctive strategies[J/OL]. J Clin Psychiatry, 2020, 81(3): OT19037BR3 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/32412697/. DOI: 10.4088/JCP.OT19037BR3.
[3]
YAN Y S, YANG X, WANG M, et al. Efficacy and acceptability of second-generation antipsychotics with antidepressants in unipolar depression augmentation: a systematic review and network meta-analysis[J]. Psychol Med, 2022, 52(12): 2224-2231. DOI: 10.1017/S0033291722001246.
[4]
COLE E J, PHILLIPS A L, BENTZLEY B S, et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial[J]. Am J Psychiatry, 2022, 179(2): 132-141. DOI: 10.1176/appi.ajp.2021.20101429.
[5]
COLE E J, STIMPSON K H, BENTZLEY B S, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression[J]. Am J Psychiatry, 2020, 177(8): 716-726. DOI: 10.1176/appi.ajp.2019.19070720.
[6]
WASSERMANN E M, ZIMMERMANN T. Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps[J]. Pharmacol Ther, 2012, 133(1): 98-107. DOI: 10.1016/j.pharmthera.2011.09.003.
[7]
FITZGERALD J M, KLUMPP H, LANGENECKER S, et al. Transdiagnostic neural correlates of volitional emotion regulation in anxiety and depression[J]. Depress Anxiety, 2019, 36(5): 453-464. DOI: 10.1002/da.22859.
[8]
LAI C H. Fronto-limbic neuroimaging biomarkers for diagnosis and prediction of treatment responses in major depressive disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 107: 110234 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/33370569/. DOI: 10.1016/j.pnpbp.2020.110234.
[9]
ZHENG A H, YU R Q, DU W Y, et al. Two-week rTMS-induced neuroimaging changes measured with fMRI in depression[J/OL]. J Affect Disord, 2020, 270: 15-21 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/32275215/. DOI: 10.1016/j.jad.2020.03.038.
[10]
ZHANG M, WANG R H, LUO X, et al. Repetitive transcranial magnetic stimulation target location methods for depression[J/OL]. Front Neurosci, 2021, 15: 695423 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/34566561/. DOI: 10.3389/fnins.2021.695423.
[11]
HOPMAN H J, CHAN S M S, CHU W C W, et al. Personalized prediction of transcranial magnetic stimulation clinical response in patients with treatment-refractory depression using neuroimaging biomarkers and machine learning[J/OL]. J Affect Disord, 2021, 290: 261-271 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/34010751/. DOI: 10.1016/j.jad.2021.04.081.
[12]
CASH R F H, WEIGAND A, ZALESKY A, et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression[J]. Biol Psychiatry, 2021, 90(10): 689-700. DOI: 10.1016/j.biopsych.2020.05.033.
[13]
AOUN M ABO, MEEK B P, MODIRROUSTA M. Cognitive profiles in major depressive disorder: comparing remitters and non-remitters to rTMS treatment[J/OL]. Psychiatry Res, 2019, 279: 55-61 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/31302352/. DOI: 10.1016/j.psychres.2019.07.007.
[14]
PASCUAL-LEONE A, HALLETT M. Induction of errors in a delayed response task by repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex[J]. Neuroreport, 1994, 5(18): 2517-2520. DOI: 10.1097/00001756-199412000-00028.
[15]
NOTZON S, STEINBERG C, ZWANZGER P, et al. Modulating emotion perception: opposing effects of inhibitory and excitatory prefrontal cortex stimulation[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3(4): 329-336. DOI: 10.1016/j.bpsc.2017.12.007.
[16]
GALLETLY C, GILL S, RIGBY A, et al. Assessing the effects of repetitive transcranial magnetic stimulation on cognition in major depressive disorder using computerized cognitive testing[J]. J ECT, 2016, 32(3): 169-173. DOI: 10.1097/YCT.0000000000000308.
[17]
TRAPP N T, BRUSS J, KING JOHNSON M, et al. Reliability of targeting methods in TMS for depression: beam F3 vs. 5.5 cm[J]. Brain Stimul, 2020, 13(3): 578-581. DOI: 10.1016/j.brs.2020.01.010.
[18]
BEAM W, BORCKARDT J J, REEVES S T, et al. An efficient and accurate new method for locating the F3 position for prefrontal TMS applications[J]. Brain Stimul, 2009, 2(1): 50-54. DOI: 10.1016/j.brs.2008.09.006.
[19]
CORLIER J, BURNETTE E, WILSON A C, et al. Effect of repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD) on cognitive control[J/OL]. J Affect Disord, 2020, 265: 272-277 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/32090751/. DOI: 10.1016/j.jad.2020.01.068.
[20]
MIR-MOGHTADAEI A, CABALLERO R, FRIED P, et al. Concordance between BeamF3 and MRI-neuronavigated target sitesfor repetitive transcranial magnetic stimulation of the LeftDorsolateral prefrontal cortex[J]. Brain Stimul, 2015, 8(5): 965-973. DOI: 10.1016/j.brs.2015.05.008.
[21]
MYLIUS V, AYACHE S S, AHDAB R, et al. Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age[J/OL]. NeuroImage, 2013, 78: 224-232 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/23567888/. DOI: 10.1016/j.neuroimage.2013.03.061.
[22]
FOX M D, BUCKNER R L, WHITE M P, et al. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate[J]. Biol Psychiatry, 2012, 72(7): 595-603. DOI: 10.1016/j.biopsych.2012.04.028.
[23]
FITZGERALD P B, HOY K, MCQUEEN S, et al. A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression[J]. Neuropsychopharmacology, 2009, 34(5): 1255-1262. DOI: 10.1038/npp.2008.233.
[24]
WEIGAND A, HORN A, CABALLERO R, et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites[J]. Biol Psychiatry, 2018, 84(1): 28-37. DOI: 10.1016/j.biopsych.2017.10.028.
[25]
CASH R F H, ZALESKY A, THOMSON R H, et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization[J/OL]. Biol Psychiatry, 2019, 86(2): e5-e7 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/30670304/. DOI: 10.1016/j.biopsych.2018.12.002.
[26]
SIDDIQI S H, TAYLOR S F, COOKE D, et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation[J]. Am J Psychiatry, 2020, 177(5): 435-446. DOI: 10.1176/appi.ajp.2019.19090915.
[27]
DREW P J. Vascular and neural basis of the BOLD signal[J/OL]. Curr Opin Neurobiol, 2019, 58: 61-69 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/31336326/. DOI: 10.1016/j.conb.2019.06.004.
[28]
RICHARD M, NOISEUX C, DESBEAUMES JODOIN V, et al. Prolonged intermittent theta burst stimulation in the treatment of major depressive disorder: a case series[J/OL]. Psychiatry Res, 2022, 315: 114709 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/35816923/. DOI: 10.1016/j.psychres.2022.114709.
[29]
TAÏB S, ARBUS C, SAUVAGET A, et al. How does repetitive transcranial magnetic stimulation influence the brain in depressive disorders?: a review of neuroimaging magnetic resonance imaging studies[J]. J ECT, 2018, 34(2): 79-86. DOI: 10.1097/YCT.0000000000000477.
[30]
PADMANABHAN J L, COOKE D, JOUTSA J, et al. A human depression circuit derived from focal brain lesions[J]. Biol Psychiatry, 2019, 86(10): 749-758. DOI: 10.1016/j.biopsych.2019.07.023.
[31]
GE R Y, HUMAIRA A, GREGORY E, et al. Predictive value of acute neuroplastic response to rTMS in treatment outcome in depression: a concurrent TMS-fMRI trial[J]. Am J Psychiatry, 2022, 179(7): 500-508. DOI: 10.1176/appi.ajp.21050541.
[32]
UZAIR M, ABUALAIT T, ARSHAD M, et al. Transcranial magnetic stimulation in animal models of neurodegeneration[J]. Neural Regen Res, 2022, 17(2): 251-265. DOI: 10.4103/1673-5374.317962.
[33]
FENG Z J, DENG X P, ZHAO N, et al. Resting-state fMRI functional connectivity strength predicts local activity change in the dorsal cingulate cortex: a multi-target focused rTMS study[J]. Cereb Cortex, 2022, 32(13): 2773-2784. DOI: 10.1093/cercor/bhab380.
[34]
GE R Y, DOWNAR J, BLUMBERGER D M, et al. Functional connectivity of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment-resistant depression at 3-month follow-up[J]. Brain Stimul, 2020, 13(1): 206-214. DOI: 10.1016/j.brs.2019.10.012.
[35]
TAYLOR S F, HO S S, ABAGIS T, et al. Changes in brain connectivity during a sham-controlled, transcranial magnetic stimulation trial for depression[J/OL]. J Affect Disord, 2018, 232: 143-151 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/29494898/. DOI: 10.1016/j.jad.2018.02.019.
[36]
YU T, HUO L J, LUO X, et al. Research progress of individualized transcranial magnetic stimulation in the treatment of depression[J]. J Neurosci Ment Heath, 2022, 22(7): 457-462. DOI: 10.3969/j.issn.1009-6574.2022.07.001.
[37]
XIA M R, HE Y. Connectome-guided transcranial magnetic stimulation treatment in depression[J]. Eur Child Adolesc Psychiatry, 2022, 31(10): 1481-1483. DOI: 10.1007/s00787-022-02089-1.
[38]
ROLLS E T, CHENG W, GONG W K, et al. Functional connectivity of the anterior cingulate cortex in depression and in health[J]. Cereb Cortex, 2019, 29(8): 3617-3630. DOI: 10.1093/cercor/bhy236.
[39]
WU G R, RAEDT R D, VAN SCHUERBEEK P, et al. Opposite subgenual cingulate cortical functional connectivity and metabolic activity patterns in refractory melancholic major depression[J]. Brain Imaging Behav, 2020, 14(2): 426-435. DOI: 10.1007/s11682-018-0011-1.
[40]
KIM H, KIM Y K, LEE J Y, et al. Hypometabolism and altered metabolic connectivity in patients with Internet gaming disorder and alcohol use disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 95: 109680 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/31255649/. DOI: 10.1016/j.pnpbp.2019.109680.
[41]
KIM J Y, CHUN J W, PARK C H, et al. The correlation between the frontostriatal network and impulsivity in Internet gaming disorder[J/OL]. Sci Rep, 2019, 9(1): 1191 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/30718701/. DOI: 10.1038/s41598-018-37702-4.
[42]
WU Z N, FANG X Y, YU L F, et al. Abnormal functional connectivity of the anterior cingulate cortex subregions mediates the association between anhedonia and sleep quality in major depressive disorder[J/OL]. J Affect Disord, 2022, 296: 400-407 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/34606812/. DOI: 10.1016/j.jad.2021.09.104.
[43]
LUO X, HU Y R, WANG R H, et al. Individualized rTMS treatment for depression using an fMRI-based targeting method[J/OL]. J Vis Exp, 2021(174) [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/34398163/. DOI: 10.3791/62687.
[44]
VINK J J T, MANDIJA S, PETROV P I, et al. A novel concurrent TMS-fMRI method to reveal propagation patterns of prefrontal magnetic brain stimulation[J]. Hum Brain Mapp, 2018, 39(11): 4580-4592. DOI: 10.1002/hbm.24307.
[45]
OATHES D J, ZIMMERMAN J P, DUPRAT R, et al. Resting fMRI-guided TMS results in subcortical and brain network modulation indexed by interleaved TMS/fMRI[J]. Exp Brain Res, 2021, 239(4): 1165-1178. DOI: 10.1007/s00221-021-06036-5.
[46]
ELBAU I G, LYNCH C J, DOWNAR J, et al. Functional connectivity mapping for rTMS target selection in depression[J]. Am J Psychiatry, 2023, 180(3): 230-240. DOI: 10.1176/appi.ajp.20220306.
[47]
CASH R F H, COCCHI L, LV J L, et al. Personalized connectivity-guided DLPFC-TMS for depression: advancing computational feasibility, precision and reproducibility[J]. Hum Brain Mapp, 2021, 42(13): 4155-4172. DOI: 10.1002/hbm.25330.
[48]
SINGH A, ERWIN-GRABNER T, SUTCLIFFE G, et al. Personalized repetitive transcranial magnetic stimulation temporarily alters default mode network in healthy subjects[J/OL]. Sci Rep, 2019, 9(1): 5631 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/30948765/. DOI: 10.1038/s41598-019-42067-3.
[49]
SIDDIQI S H, TRAPP N T, SHAHIM P, et al. Individualized connectome-targeted transcranial magnetic stimulation for neuropsychiatric sequelae of repetitive traumatic brain injury in a retired NFL player[J]. J Neuropsychiatry Clin Neurosci, 2019, 31(3): 254-263. DOI: 10.1176/appi.neuropsych.18100230.
[50]
SIDDIQI S H, TRAPP N T, HACKER C D, et al. Repetitive transcranial magnetic stimulation with resting-state network targeting for treatment-resistant depression in traumatic brain injury: a randomized, controlled, double-blinded pilot study[J]. J Neurotrauma, 2019, 36(8): 1361-1374. DOI: 10.1089/neu.2018.5889.
[51]
MORENO-ORTEGA M, KANGARLU A, LEE S, et al. Parcel-guided rTMS for depression[J/OL]. Transl Psychiatry, 2020, 10(1): 283 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/32788580/. DOI: 10.1038/s41398-020-00970-8.
[52]
DU L, LIU H, DU W Y, et al. Stimulated left DLPFC-nucleus accumbens functional connectivity predicts the anti-depression and anti-anxiety effects of rTMS for depression[J/OL]. Transl Psychiatry, 2018, 7(11): 3 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/29520002/. DOI: 10.1038/s41398-017-0005-6.
[53]
FOX M D, BUCKNER R L, LIU H S, et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases[J/OL]. Proc Natl Acad Sci U S A, 2014, 111(41): E4367-E4375 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/25267639/. DOI: 10.1073/pnas.1405003111.
[54]
BEWERNICK B H, KAYSER S, STURM V, et al. Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy[J]. Neuropsychopharmacology, 2012, 37(9): 1975-1985. DOI: 10.1038/npp.2012.44.
[55]
IWABUCHI S J, AUER D P, LANKAPPA S T, et al. Baseline effective connectivity predicts response to repetitive transcranial magnetic stimulation in patients with treatment-resistant depression[J]. Eur Neuropsychopharmacol, 2019, 29(5): 681-690. DOI: 10.1016/j.euroneuro.2019.02.012.
[56]
NEACSIU A D, LUBER B M, DAVIS S W, et al. On the concurrent use of self-system therapy and functional magnetic resonance imaging-guided transcranial magnetic stimulation as treatment for depression[J]. J ECT, 2018, 34(4): 266-273. DOI: 10.1097/YCT.0000000000000545.
[57]
ZHANG Z J, ZHANG H X, XIE C M, et al. Task-related functional magnetic resonance imaging-based neuronavigation for the treatment of depression by individualized repetitive transcranial magnetic stimulation of the visual cortex[J]. Sci China Life Sci, 2021, 64(1): 96-106. DOI: 10.1007/s11427-020-1730-5.
[58]
FAN J, TSO I F, MAIXNER D F, et al. Segregation of salience network predicts treatment response of depression to repetitive transcranial magnetic stimulation[J/OL]. Neuroimage Clin, 2019, 22: 101719 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/30776777/. DOI: 10.1016/j.nicl.2019.101719.
[59]
LI M L, DAHMANI L, WANG D H, et al. Co-activation patterns across multiple tasks reveal robust anti-correlated functional networks[J/OL]. Neuroimage, 2021, 227: 117680 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/33359345/. DOI: 10.1016/j.neuroimage.2020.117680.
[60]
JANNATI A, OBERMAN L M, ROTENBERG A, et al. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation[J]. Neuropsychopharmacology, 2023, 48(1): 191-208. DOI: 10.1038/s41386-022-01453-8.
[61]
BRIEND F, LEROUX E, NATHOU C, et al. GeodesicSlicer: a slicer toolbox for targeting brain stimulation[J]. Neuroinformatics, 2020, 18(4): 509-516. DOI: 10.1007/s12021-020-09457-9.
[62]
GOETZ S M, KOZYRKOV I C, LUBER B, et al. Accuracy of robotic coil positioning during transcranial magnetic stimulation[J/OL]. J Neural Eng, 2019, 16(5): 054003 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/31189147/. DOI: 10.1088/1741-2552/ab2953.

PREV Diffuse midline glioma of cervical spinal cord with H3 K27 alterations: One case report and literature review
NEXT Research progress of MRI in patients with somatization symptoms of depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn