Share:
Share this content in WeChat
X
Review
Research progress of MRI in patients with somatization symptoms of depression
LI Wenling  WANG Lin  ZHAO Xiaoju 

Cite this article as: LI W L, WANG L, ZHAO X J. Research progress of MRI in patients with somatization symptoms of depression[J]. Chin J Magn Reson Imaging, 2023, 14(11): 155-158, 187. DOI:10.12015/issn.1674-8034.2023.11.026.


[Abstract] Depression is a common neuropsychiatric disorder, and the main clinical manifestations are somatization in most patients in addition to persistent depressed mood and lack of pleasure. Somatization symptoms refer to the appearance of various uncomfortable symptoms in the body, and these discomfort symptoms cannot be reasonably explained by the existing disease process; Patients with depression with somatization are prone to misdiagnosis and have a poor prognosis.In recent years, the research of neuroimaging has made rapid progress, providing important biological evidence for exploring and studying the neurogenesis mechanism of somatization symptoms of depression. This article reviews the imaging studies of brain structure and brain function associated with somatic symptoms of depression in recent years, in order to provide an important basis for the prevention, early diagnosis and precision treatment of this disease.
[Keywords] depression;somatization symptoms;neuroimaging;magnetic resonance imaging

LI Wenling1   WANG Lin2*   ZHAO Xiaoju2  

1 The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China

2 Department of Radiology, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China

Corresponding author: WANG L, E-mail: wlcxy828@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS 2021 Development Fund of Gansu Clinical Research Center for Oncology with Integrated Traditional Chinese and Western Medicine (No. zlzx2021-10).
Received  2023-06-14
Accepted  2023-10-30
DOI: 10.12015/issn.1674-8034.2023.11.026
Cite this article as: LI W L, WANG L, ZHAO X J. Research progress of MRI in patients with somatization symptoms of depression[J]. Chin J Magn Reson Imaging, 2023, 14(11): 155-158, 187. DOI:10.12015/issn.1674-8034.2023.11.026.

[1]
LIU M, HE E, FU X, et al. Cerebral blood flow self-regulation in depression[J]. J Affect Disord, 2022, 302: 324-331. DOI: 10.1016/j.jad.2022.01.057.
[2]
LI Y, JIA S, CAO B, et al. Network analysis of somatic symptoms in Chinese patients with depressive disorder[J/OL]. Front Public Health, 2023, 11: 1079873 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/36992877/. DOI: 10.3389/fpubh.2023.1079873.
[3]
GOODWIN G M. Revisiting treatment options for depressed patients with generalised anxiety disorder[J]. Adv Ther, 2021, 38(Suppl 2): 61-68. DOI: 10.1007/s12325-021-01861-0.
[4]
GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Psychiatry, 2022, 9(2): 137-150. DOI: 10.1016/S2215-0366(21)00395-3.
[5]
MEKONEN T, CHAN G C K, CONNOR J P, et al. Estimating the global treatment rates for depression: A systematic review and meta-analysis[J]. J Affect Disord, 2021, 295: 1234-1242. DOI: 10.1016/j.jad.2021.09.038.
[6]
WU X, ZHU Y, WU Z, et al. Identifying the subtypes of major depressive disorder based on somatic symptoms: A longitudinal study using latent profile analysis[J/OL]. Front Psychiatry, 2022, 13: 759334 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35903631/. DOI: 10.3389/fpsyt.2022.759334.
[7]
YANG X, LUO J, WANG P, et al. Characteristics and economic burden of patients with somatoform disorders in Chinese general hospitals: a multicenter cross-sectional study[J/OL]. Ann Gen Psychiatry, 2023, 22(1): 30 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/37573334/. DOI: 10.1186/s12991-023-00457-y.
[8]
JIAN Y, JIA S, SHI Z, et al. Characteristics of somatic symptoms among Chinese patients diagnosed with major depressive episode[J]. Arch Psychiatr Nurs, 2021, 35(1): 27-33. DOI: 10.1016/j.apnu.2020.11.001.
[9]
NOVICK D, MONTGOMERY W, AGUADO J, et al. Which somatic symptoms are associated with an unfavorable course in Asian patients with major depressive disorder?[J]. J Affect Disord, 2013, 149(1-3): 182-188. DOI: 10.1016/j.jad.2013.01.020.
[10]
SCHAAKXS R, COMIJS H C, LAMERS F, et al. Associations between age and the course of major depressive disorder: a 2-year longitudinal cohort study[J]. Lancet Psychiatry, 2018, 5(7): 581-590. DOI: 10.1016/S2215-0366(18)30166-4.
[11]
TESSITORE A, CIRILLO M, DE MICCO R. Functional connectivity signatures of Parkinson's disease[J]. J Parkinsons Dis, 2019, 9(4): 637-652. DOI: 10.3233/JPD-191592.
[12]
GONG J, WANG J, QIU S, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis[J/OL]. Transl Psychiatry, 2020, 10(1): 353 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/33077728/. DOI: 10.1038/s41398-020-01036-5.
[13]
YANG Y, ZHU D M, ZHANG C, et al. Brain structural and functional alterations specific to low sleep efficiency in major depressive disorder[J/OL]. Front Neurosci, 2020, 14: 50 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/32082117/. DOI: 10.3389/fnins.2020.00050.
[14]
RECHBERGER S, LI Y, KOPETZKY S J, et al. Automated high-definition MRI processing routine robustly detects longitudinal morphometry changes in Alzheimer's disease patients[J/OL]. Front Aging Neurosci, 2022, 14: 832828 [2023-06-14]. DOI: 10.3389/fnagi.2022.832828.
[15]
HENSSEN D, KLUIN S J P, KLEEREBEZEM J, et al. White matter changes in the trigeminal spinal tract in chronic migraineurs: an ex vivo study combining ultra-high-field diffusion tensor imaging and polarized light imaging microscopy[J]. Pain, 2022, 163(4): 779-785. DOI: 10.1097/j.pain.0000000000002424.
[16]
NEMOTO K. Understanding voxel-based morphometry[J]. Brain Nerve, 2017, 69(5): 505-511. DOI: 10.11477/mf.1416200776.
[17]
TAKEUCHI H, KAWASHIMA R. Voxel-based morphometry and cognitive function[J]. Brain Nerve, 2017, 69(5): 547-556. DOI: 10.11477/mf.1416200781.
[18]
VALET M, GUENDEL H, SPRENGER T, et al. Patients with pain disorder show gray-matter loss in pain-processing structures: A voxel-based morphometric study[J]. Psychosom Med, 2009, 71(1): 49-56. DOI: 10.1097/PSY.0b013e31818d1e02.
[19]
DELVECCHIO G, ROSSETTI M G, CALETTI E, et al. The neuroanatomy of somatoform disorders: A magnetic resonance imaging study[J]. Psychosom, 2019, 60(3): 278-288. DOI: 10.1016/j.psym.2018.07.005.
[20]
DE RIDDER D, ADHIA D, VANNESTE S. The anatomy of pain and suffering in the brain and its clinical implications[J]. Neurosci Biobehav Rev, 2021, 130: 125-146. DOI: 10.1016/j.neubiorev.2021.08.013.
[21]
MOSTOFI A, MORGANTE F, EDWARDS M J, et al. Pain in Parkinson's disease and the role of the subthalamic nucleus[J]. Brain, 2021, 144(5): 1342-1350. DOI: 10.1093/brain/awab001.
[22]
HUANG J, CAI Y, SU Y, et al. Gastrointestinal symptoms during depressive episodes in 3256 patients with major depressive disorders: Findings from the NSSD[J]. J Affect Disord, 2021, 286: 27-32. DOI: 10.1016/j.jad.2021.02.039.
[23]
COLIJN M A. The Co-occurrence of Gastrointestinal Symptoms and Psychosis: Diagnostic Considerations[J/OL]. Prim Care Companion CNS Disord, 2022, 24(3): 22nr03236 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35768019/. DOI: 10.4088/PCC.22nr03236.
[24]
LIU P, LI G, ZHANG A, et al. Brain structural and functional alterations in MDD patient with gastrointestinal symptoms: A resting -state MRI study[J]. J Affect Disord, 2020, 273: 95-105. DOI: 10.1016/j.jad.2020.03.107.
[25]
BISWAS A, KRISHNAN P, VIDARSSON L, et al. Cerebral white matter tract anatomy[J]. Neuroimaging Clin N Am, 2022, 32(3): 507-528. DOI: 10.1016/j.nic.2022.05.001.
[26]
SEILER S, FLETCHER E, HASSAN-ALI K, et al. Cerebral tract integrity relates to white matter hyperintensities, cortex volume, and cognition[J]. Neurobiol Aging, 2018, 72: 14-22. DOI: 10.1016/j.neurobiolaging.2018.08.005.
[27]
ZHAO J, SU Q, LIU F, et al. Regional white matter volume abnormalities in first-episode somatization disorder[J]. Int J Psychophysiol, 2018, 133: 12-16. DOI: 10.1016/j.ijpsycho.2018.09.003.
[28]
SUN J, MA Y, CHEN L, et al. Altered brain function in treatment-resistant and non-treatment-resistant depression patients: A resting-state functional magnetic resonance imaging study[J/OL]. Front Psychiatry, 2022, 13: 904139 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35935411/. DOI: 10.3389/fpsyt.2022.904139.
[29]
LI G Z, LIU P H, ZHANG A X, et al. A resting state fMRI study of major depressive disorder with and without anxiety[J/OL]. Psychiatry Res, 2022, 315: 114697 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35839636/. DOI: 10.1016/j.psychres.2022.114697.
[30]
ZHANG B, LIU S, CHEN S, et al. Common and unique neural activities in subclinical depression and major depressive disorder indicate the development of brain impairments in different depressive stages[J]. J Affect Disord, 2022, 317: 278-286. DOI: 10.1016/j.jad.2022.08.128.
[31]
YAN R, TAO S, LIU H, et al. Abnormal alterations of regional spontaneous neuronal activity in inferior frontal orbital gyrus and corresponding brain circuit alterations: A resting-state fMRI study in somatic depression[J/OL]. Front Psychiatry, 2019, 10: 267 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/31114515/. DOI: 10.3389/fpsyt.2019.00267.
[32]
LIU P, TU H, ZHANG A, et al. Brain functional alterations in MDD patients with somatic symptoms: A resting-state fMRI study[J]. J Affect Disord, 2021, 295: 788-796. DOI: 10.1016/j.jad.2021.08.143.
[33]
OU Y, LIU F, CHEN J, et al. Increased coherence-based regional homogeneity in resting-state patients with first-episode, drug-naive somatization disorder[J]. J Affect Disord, 2018, 235: 150-154. DOI: 10.1016/j.jad.2018.04.036.
[34]
XU Z, ZHANG S, HUANG L, et al. Altered resting-state brain activities in drug-naïve major depressive disorder assessed by fMRI: Associations with somatic symptoms defined by Yin-Yang theory of the traditional Chinese medicine[J/OL]. Front Psychiatry, 2018, 9: 195 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/29867614/. DOI: 10.3389/fpsyt.2018.00195.
[35]
YAN M, CHEN J, LIU F, et al. Disrupted regional homogeneity in major depressive disorder with gastrointestinal symptoms at rest[J/OL]. Front Psychiatry, 2021, 12: [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/34122171/. DOI: 10.3389/fpsyt.2021.636820.
[36]
FU X, LI H, YAN M, et al. Shared and distinct fractional amplitude of low-frequency fluctuation patterns in major depressive disorders with and without gastrointestinal symptoms[J/OL]. Front Psychiatry, 2021, 12: 744898 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/34925089/. DOI: 10.3389/fpsyt.2021.744898.
[37]
SU Q, YAO D, JIANG M, et al. Dissociation of regional activity in default mode network in medication-naive, first-episode somatization disorder[J/OL]. Plos One, 2014, 9(7): e99273 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/24983962/. DOI: 10.1371/journal.pone.0099273.
[38]
CHOU T, DECKERSBACH T, DOUGHERTY D D, et al. The default mode network and rumination in individuals at risk for depression[J/OL]. Soc Cogn Affect Neurosci, 2023, 18(1): nsad032 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/37261927/. DOI: 10.1093/scan/nsad032.
[39]
BANGASSER D A, CUARENTA A. Sex differences in anxiety and depression: circuits and mechanisms[J]. Nat Rev Neurosci, 2021, 22(11): 674-684. DOI: 10.1038/s41583-021-00513-0.
[40]
YAO Z, YAN R, WEI M, et al. Gender differences in brain activity and the relationship between brain activity and differences in prevalence rates between male and female major depressive disorder patients: a resting-state fMRI study[J]. Clin Neurophysiol, 2014, 125(11): 2232-2239. DOI: 10.1016/j.clinph.2014.03.006.
[41]
GENG J, YAN R, SHI J, et al. Altered regional homogeneity in patients with somatic depression: A resting-state fMRI study[J]. J Affect Disord, 2019, 246: 498-505. DOI: 10.1016/j.jad.2018.12.066
[42]
ZHANG X L. Study of female MDD patients' brain functional activities using multimodal magnetic resonance imaging[D]. Shanghai: Shanghai Jiao Tong University, 2016. DOI: 10.27307/d.cnki.gsjtu.2016.002761.
[43]
YANG N, YUAN S, LI C, et al. Diagnostic identification of chronic insomnia using ALFF and FC features of resting-state functional MRI and logistic regression approach[J/OL]. Sci Rep, 2023, 13(1): 406 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/36624131/. DOI: 10.1038/s41598-022-24837-8.
[44]
LU S, SHAO J, FENG Q, et al. Aberrant interhemispheric functional connectivity in major depressive disorder with and without anhedonia[J/OL]. BMC Psychiatry, 2022, 22(1): 688 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/36348342/. DOI: 10.1186/s12888-022-04343-x.
[45]
DING Y, OU Y, YAN H, et al. Disrupted cerebellar-default mode network functional connectivity in major depressive disorder with gastrointestinal symptoms[J/OL]. Front Cell Neurosci, 2022, 16: 833592 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35308120/. DOI: 10.3389/fncel.2022.833592.
[46]
WANG H, GUO W, LIU F, et al. Clinical significance of increased cerebellar default-mode network connectivity in resting-state patients with drug-naive somatization disorder[J/OL]. Medicine, 2016, 95(28): e4043 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/27428190/. DOI: 10.1097/MD.0000000000004043.
[47]
LIU Y, OU Y, ZHAO J, et al. Abnormal interhemispheric homotopic functional connectivity is correlated with gastrointestinal symptoms in patients with major depressive disorder[J]. J Psychiatr Res, 2021, 144: 234-240. DOI: 10.1016/j.jpsychires.2021.10.016.
[48]
YAN M, FU X, OU Y, et al. Multiple-network alterations in major depressive disorder with gastrointestinal symptoms at rest revealed by global functional connectivity analysis[J/OL]. Front Neurosci, 2022, 16 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35812223/. DOI: 10.3389/fnins.2022.897707.
[49]
DU Y, ZHAO J, WANG Y, et al. Brain functional differences in drug-naive major depression with anxiety patients of different traditional chinese medicine syndrome patterns: A resting-state fMRI study[J/OL]. Evid Based Complement Alternat Med, 2020, 2020: 7504917 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/32148551/. DOI: 10.1155/2020/7504917.
[50]
YU Y, CHEN Y, WU Y, et al. The common neural mechanism of somatic symptoms of depression and anxiety disorders: A resting-state functional magnetic resonance imaging study[J]. Neuropsychobiology, 2023, 82(1): 51-60. DOI: 10.1016/j.jpsychires.2021.10.016.
[51]
CHEN Y. Study on the neural mechanism of somatization in patients with emotional disorders based on functional magnetic resonance imaging[D]. Hefei: Anhui Medical University, 2020. DOI: 10.26921/d.cnki.ganyu.2020.000298.
[52]
HAKAMATA Y, MIZUKAMI S, IZAWA S, et al. Basolateral amygdala connectivity with subgenual anterior cingulate cortex represents enhanced fear-related memory encoding in anxious humans[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2020, 5(3): 301-310. DOI: 10.1016/j.bpsc.2019.11.008.
[53]
SAKATA H, KIM Y, NEJIME M, et al. Laminar pattern of projections indicates the hierarchical organization of the anterior cingulate-temporal lobe emotion system[J/OL]. Front Neuroanat, 2019, 13: 74 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/31417370/. DOI: 10.3389/fnana.2019.00074.
[54]
ZU M, WANG A, BAI T, et al. Resting-state functional connectivity between centromedial amygdala and insula as related to somatic symptoms in depressed patients: A preliminary study[J]. Psychosom Med, 2019, 81(5): 434-440. DOI: 10.1097/PSY.0000000000000697.
[55]
ZHANG T, BAI T, XIE W, et al. Abnormal connectivity of anterior-insular subdivisions and relationship with somatic symptom in depressive patients[J]. Brain Imaging Behav, 2021, 15(4): 1760-1768. DOI: 10.1007/s11682-020-00371-x.
[56]
WANG Q, ZHU J J, WANG L, et al. Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways[J/OL]. Nat Commun, 2022, 13(1): 5540 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/36130959/. DOI: 10.1038/s41467-022-33241-9.

PREV Advances in the application of magnetic resonance imaging in the localization of therapeutic targets for transcranial magnetic stimulation in depression
NEXT Advancements in the multi-modal MRI study of probiotic formulations for ameliorating cognitive impairment in type 2 diabetes mellitus patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn