Share:
Share this content in WeChat
X
Review
Advancements in the multi-modal MRI study of probiotic formulations for ameliorating cognitive impairment in type 2 diabetes mellitus patients
WANG Xuyang  XU Shan  YANG Dong  LIN Lin  SHEN Jing  WU Jianlin 

Cite this article as: WANG X Y, XU S, YANG D, et al. Advancements in the multi-modal MRI study of probiotic formulations for ameliorating cognitive impairment in type 2 diabetes mellitus patients[J]. Chin J Magn Reson Imaging, 2023, 14(11): 159-163. DOI:10.12015/issn.1674-8034.2023.11.027.


[Abstract] Type 2 diabetes mellitus (T2DM) is the most common type of diabetes and is often accompanied by varying degrees of cognitive dysfunction. Research has shown a close relationship between the gut microbiota and the complications associated with T2DM. There is hope that cognitive dysfunction and other complications can be improved through the intervention of probiotics, and their assessment and evaluation can be achieved using multimodal MRI techniques. This article provides a comprehensive review of the current state of research and advancements in this field, aiming to offer new directions for personalized clinical diagnosis and treatment of cognitive impairments in T2DM and to provide new insights for research in the T2DM gut-brain-axis field.
[Keywords] type 2 diabetes mellitus;cognitive impairment;probiotics;mutimodal magnetic resonance imaging;magnetic resonance imaging;gut-brain-axis

WANG Xuyang   XU Shan   YANG Dong   LIN Lin   SHEN Jing   WU Jianlin*  

Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China

Corresponding author: WU J L, E-mail: cjr.wujianlin@vip.163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071911); Dalian Municipal Science and Technology Innovation Fund (No. 2021JJ12SN38).
Received  2023-07-25
Accepted  2023-11-03
DOI: 10.12015/issn.1674-8034.2023.11.027
Cite this article as: WANG X Y, XU S, YANG D, et al. Advancements in the multi-modal MRI study of probiotic formulations for ameliorating cognitive impairment in type 2 diabetes mellitus patients[J]. Chin J Magn Reson Imaging, 2023, 14(11): 159-163. DOI:10.12015/issn.1674-8034.2023.11.027.

[1]
PATEL D, AYESHA I E, MONSON N R, et al. The effectiveness of metformin in diabetes prevention: A systematic review and Meta-analysis[J/OL]. Cureus, 2023, 15(9): e46108 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/37900422/. DOI: 10.7759/cureus.46108.
[2]
BIESSELS G J, DESPA F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591-604. DOI: 10.1038/s41574-018-0048-7.
[3]
ANTAL B, MCMAHON L P, SULTAN S F, et al. Type 2 diabetes mellitus accelerates brain aging and cognitive decline: Complementary findings from UK Biobank and meta-analyses[J/OL]. Elife, 2022, 11: e73138 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/35608247/. DOI: 10.7554/eLife.73138.
[4]
LIU W T, ZHANG X L. Research progress in MRI of microbiota-gut-brain axis dysbiosis[J]. Chin J Magn Reson Imaging, 2023, 14(2): 158-162. DOI: 10.12015/issn.1674-8034.2023.02.028.
[5]
LI X, CAI Y, ZHANG Z, et al. Glial and Vascular Cell Regulation of the Blood-Brain Barrier in Diabetes[J]. Diabetes Metab J, 2022, 46(2): 222-238. DOI: 10.4093/dmj.2021.0146.
[6]
MACIEJCZYK M, ŻEBROWSKA E, CHABOWSKI A. Insulin resistance and oxidative stress in the brain: What's new?[J]. Int J Mol Sci, 2019, 20(4): 874. DOI: 10.3390/ijms20040874.
[7]
HAMZÉ R, DELANGRE E, TOLU S, et al. Type 2 diabetes mellitus and Alzheimer's disease: Shared molecular mechanisms and potential common therapeutic targets[J/OL]. Int J Mol Sci, 2022, 23(23): 15287 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/36499613/. DOI: 10.3390/ijms232315287.
[8]
BAUM P, TOYKA K V, BLÜHER M, et al. Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN)-New aspects[J/OL]. Int J Mol Sci, 2021, 22(19): 10835 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/34639176/. DOI: 10.3390/ijms221910835.
[9]
ROHM T V, MEIER D T, OLEFSKY J M, et al. Inflammation in obesity, diabetes, and related disorders[J]. Immunity, 2022, 55(1): 31-55. DOI: 10.1016/j.immuni.2021.12.013.
[10]
WU H, BALLANTYNE C M. Metabolic inflammation and insulin resistance in obesity[J]. Circ Res, 2020, 126(11): 1549-1564. DOI: 10.1161/CIRCRESAHA.119.315896.
[11]
LIU L, ZHANG J, CHENG Y, et al. Gut microbiota: A new target for T2DM prevention and treatment[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 958218 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/36034447/. DOI: 10.3389/fendo.2022.958218.
[12]
PORTINCASA P, BONFRATE L, VACCA M, et al. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis[J/OL]. Int J Mol Sci, 2022, 23(3): 1105 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/35163038/. DOI: 10.3390/ijms23031105.
[13]
LI Z H, JIANG Y Y, LONG C Y, et al. The gut microbiota-astrocyte axis: Implications for type 2 diabetic cognitive dysfunction[J]. CNS Neurosci Ther, 2023, 29(Suppl 1): 59-73. DOI: 10.1111/cns.14077.
[14]
LIU Z, DAI X, ZHANG H, et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment[J/OL]. Nat Commun, 2020, 11(1): 855 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/32071312/. DOI: 10.1038/s41467-020-14676-4.
[15]
LI H Y, ZHOU D D, GAN R Y, et al. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review[J/OL]. Nutrients, 2021, 13(9): 3211 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/34579087/. DOI: 10.3390/nu13093211.
[16]
TAKEUCHI T, KUBOTA T, NAKANISHI Y, et al. Gut microbial carbohydrate metabolism contributes to insulin resistance[J]. Nature, 2023, 621(7978): 389-395. DOI: 10.1038/s41586-023-06466-x.
[17]
NOGAL A, VALDES A M, MENNI C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health[J]. Gut Microbes, 2021, 13(1): 1-24. DOI: 10.1080/19490976.2021.1897212.
[18]
WANG Y, DILIDAXI D, WU Y, et al. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice[J/OL]. Biomed Pharmacother, 2020, 125: 109914 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/32035395/. DOI: 10.1016/j.biopha.2020.109914.
[19]
SOLITO A, BOZZI CIONCI N, CALGARO M, et al. Supplementation with Bifidobacterium breve BR03 and B632 strains improved insulin sensitivity in children and adolescents with obesity in a cross-over, randomized double-blind placebo-controlled trial[J]. Clin Nutr, 2021, 40(7): 4585-4594. DOI: 10.1016/j.clnu.2021.06.002.
[20]
ZIEGLER M C, GARBIM JUNIOR E E, JAHNKE V S, et al. Impact of probiotic supplementation in a patient with type 2 diabetes on glycemic and lipid profile[J]. Clin Nutr ESPEN, 2022, 49: 264-269. DOI: 10.1016/j.clnesp.2022.04.002.
[21]
RODRIGUES V F, ELIAS-OLIVEIRA J, PEREIRA Í S, et al. Akkermansia muciniphila and gut immune system: A good friendship that attenuates inflammatory bowel disease, obesity, and diabetes[J/OL]. Front Immunol, 2022, 13: 934695 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/35874661/. DOI: 10.3389/fimmu.2022.934695.
[22]
CANI P D, DEPOMMIER C, DERRIEN M, et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(10): 625-637. DOI: 10.1038/s41575-022-00631-9.
[23]
KIM C S, CHA L, SIM M, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: A randomized, double-blind, placebo-controlled, multicenter trial[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(1): 32-40. DOI: 10.1093/gerona/glaa090.
[24]
RODE J, EDEBOL CARLMAN H M T, KöNIG J, et al. multi-strain probiotic mixture affects brain morphology and resting state brain function in healthy subjects: An RCT[J/OL]. Cells, 2022, 11(18): 2922 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/36139496/. DOI: 10.3390/cells11182922.
[25]
PIEPERHOFF P, SÜDMEYER M, DINKELBACH L, et al. Regional changes of brain structure during progression of idiopathic Parkinson's disease - A longitudinal study using deformation based morphometry[J]. Cortex, 2022, 151: 188-210. DOI: 10.1016/j.cortex.2022.03.009.
[26]
GAO S, CHEN Y, SANG F, et al. White matter microstructural change contributes to worse cognitive function in patients with type 2 diabetes[J]. Diabetes, 2019, 68(11): 2085-2094. DOI: 10.2337/db19-0233.
[27]
JING J, ZHOU Y, PAN Y, et al. Reduced white matter microstructural integrity in prediabetes and diabetes: A population-based study[J/OL]. EBioMedicine, 2022, 82: 104144 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/35810560/. DOI: 10.1016/j.ebiom.2022.104144.
[28]
COMAI S, MELLONI E, LORENZI C, et al. Selective association of cytokine levels and kynurenine/tryptophan ratio with alterations in white matter microstructure in bipolar but not in unipolar depression[J]. Eur Neuropsychopharmacol, 2022, 55: 96-109. DOI: 10.1016/j.euroneuro.2021.11.003.
[29]
YANG G, DENG N, LIU Y, et al. Evaluation of glymphatic system using diffusion MR technique in T2DM cases[J/OL]. Front Hum Neurosci, 2020, 14: 300 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/32922272/. DOI: 10.3389/fnhum.2020.00300.
[30]
ELSCHOT E P, BACKES W H, POSTMA A A, et al. A comprehensive view on MRI techniques for imaging blood-brain barrier integrity[J]. Invest Radiol, 2021, 56(1): 10-19. DOI: 10.1097/RLI.0000000000000723.
[31]
VERHEGGEN I C M, FREEZE W M, DE JONG J J A, et al. Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity[J]. Neurosci Biobehav Rev, 2021, 127: 171-183. DOI: 10.1016/j.neubiorev.2021.04.025.
[32]
LI M, ZUO L, LI Y, et al. Assessment of BBB permeability in elderly T2DM patients according to dynamic contrast-enhanced MRI[J]. Chin J Geriatr Heart Brain Vessel Dis, 2021, 23(6): 633-636. DOI: 10.3969/j.issn.1009-0126.2021.06.020.
[33]
MORSHEDI M, SAGHAFI-ASL M, HOSSEINIFARD E S. The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats[J/OL]. J Transl Med, 2020, 18(1): 18 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/31924200/. DOI: 10.1186/s12967-019-02169-y.
[34]
MENG J, LIU J, LI H, et al. Impairments in intrinsic functional networks in type 2 diabetes: A meta-analysis of resting-state functional connectivity[J/OL]. Front Neuroendocrinol, 2022, 66: 100992 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/35278579/. DOI: 10.1016/j.yfrne.2022.100992.
[35]
HAAS S S, MYORAKU A, WATSON K, et al. Lower functional hippocampal connectivity in healthy adults is jointly associated with higher levels of leptin and insulin resistance[J/OL]. Eur Psychiatry, 2022, 65(1): e29 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/35492025/. DOI: 10.1192/j.eurpsy.2022.21.
[36]
EDEBOL CARLMAN H M T, RODE J, KÖNIG J, et al. Probiotic mixture containing lactobacillus helveticus, bifidobacterium longum and lactiplantibacillus plantarum affects brain responses to an arithmetic stress task in healthy subjects: A randomised clinical trial and proof-of-concept study[J/OL]. Nutrients, 2022, 14(7): 1329 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/35405944/. DOI: 10.3390/nu14071329.
[37]
KRAKOVSKI M A, ARORA N, JAIN S, et al. Diet-microbiome-gut-brain nexus in acute and chronic brain injury[J/OL]. Front Neurosci, 2022, 16: 1002266 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/36188471/. DOI: 10.3389/fnins.2022.1002266.
[38]
LAKE E M, BAZZIGALUPPI P, STEFANOVIC B. Functional magnetic resonance imaging in chronic ischaemic stroke[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1705): 20150353 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/27574307/. DOI: 10.1098/rstb.2015.0353.
[39]
WANG Y, SUN L, HE G, et al. Cerebral perfusion alterations in type 2 diabetes mellitus - a systematic review[J/OL]. Front Neuroendocrinol, 2021, 62: 100916 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/33957174/. DOI: 10.1016/j.yfrne.2021.100916.
[40]
HAN X D, LI Y J, WANG P, et al. Insulin resistance-varying associations of adiposity indices with cerebral perfusion in older adults: A population-based study[J]. J Nutr Health Aging, 2023, 27(3): 219-227. DOI: 10.1007/s12603-023-1894-2.
[41]
MA D, WANG A C, PARIKH I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice[J/OL]. Sci Rep, 2018, 8(1): 6670 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/29703936/. DOI: 10.1038/s41598-018-25190-5.
[42]
YAMANBAEVA G, SCHAUB A C, SCHNEIDER E, et al. Effects of a probiotic add-on treatment on fronto-limbic brain structure, function, and perfusion in depression: Secondary neuroimaging findings of a randomized controlled trial[J]. J Affect Disord, 2023, 324: 529-538. DOI: 10.1016/j.jad.2022.12.142.
[43]
SONG T, SONG X, ZHU C, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies[J/OL]. Ageing Res Rev, 2021, 72: 101503 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/34751136/. DOI: 10.1016/j.arr.2021.101503.
[44]
LEE S, JOO Y J, KIM R Y, et al. Obesity may connect insulin resistance to decreased neuronal viability in human diabetic brain[J]. Obesity (Silver Spring), 2020, 28(9): 1626-1630. DOI: 10.1002/oby.22869.
[45]
HE Y, KOSCIOLEK T, TANG J, et al. Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis[J]. Eur Psychiatry, 2018, 53: 37-45. DOI: 10.1016/j.eurpsy.2018.05.011.
[46]
REEVES B C, KARIMY J K, KUNDISHORA A J, et al. Glymphatic system impairment in Alzheimer's disease and idiopathic normal pressure hydrocephalus[J]. Trends Mol Med, 2020, 26(3): 285-295. DOI: 10.1016/j.molmed.2019.11.008.
[47]
BARISANO G, LYNCH K M, SIBILIA F, et al. Imaging perivascular space structure and function using brain MRI[J/OL]. Neuroimage, 2022, 257: 119329 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/35609770/. DOI: 10.1016/j.neuroimage.2022.119329.
[48]
CHAN S T, MERCALDO N D, RAVINA B, et al. Association of dilated perivascular spaces and disease severity in patients with huntington disease[J/OL]. Neurology, 2021, 96(6): e890-e894 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/33106388/. DOI: 10.1212/WNL.0000000000011121.
[49]
MA J, LIU F, YANG B, et al. Selective aberrant functional-structural coupling of multiscale brain networks in subcortical vascular mild cognitive impairment[J]. Neurosci Bull, 2021, 37(3): 287-297. DOI: 10.1007/s12264-020-00580-w.
[50]
CANNA A, ESPOSITO F, TEDESCHI G, et al. Neurovascular coupling in patients with type 2 diabetes mellitus[J/OL]. Front Aging Neurosci, 2022, 14: 976340 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/36118711/. DOI: 10.3389/fnagi.2022.976340.
[51]
SALA A, LIZARRAGA A, CAMINITI S P, et al. Brain connectomics: time for a molecular imaging perspective?[J]. Trends Cogn Sci, 2023, 27(4): 353-366. DOI: 10.1016/j.tics.2022.11.015.
[52]
FIORE A, PREZIOSA P, TEDONE N, et al. Correspondence among gray matter atrophy and atlas-based neurotransmitter maps is clinically relevant in multiple sclerosis[J]. Mol Psychiatry, 2023, 28(4): 1770-1782. DOI: 10.1038/s41380-023-01943-1.

PREV Research progress of MRI in patients with somatization symptoms of depression
NEXT Research progress of multimodal MRI brain tumor image segmentation methods
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn